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ABSTRACT
Quantifying node importance on engagement dynamics is critical

to support network stability. We can motivate or retain the users

in a social platform according to their importance s.t. the network

is more sustainable. Existing studies validate that the coreness of
a node is the “best practice” on network topology to estimate the

engagement of the node. In this paper, the importance of a node is

the effect on the engagement of other nodes when its engagement is

strengthened or weakened. Specifically, the importance of a node is

quantified via two novel concepts: the anchor power to measure the

engagement effect of node strengthening (i.e., the overall coreness

gain) and the collapse power to measure the engagement effect of

node weakening (i.e., the overall coreness loss). We find the compu-

tation of the two concepts can be naturally integrated into a shell

component-based framework, and propose a unified static algo-

rithm to compute both the anchored and collapsed followers. For

evolving networks, efficient maintenance techniques are designed

to update the follower sets of each node, which is faster than redo-

ing the static algorithm by around 3 orders of magnitude. Extensive

experiments on real-life data demonstrate the effectiveness of our

model and the efficiency of our algorithms.
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1 INTRODUCTION
The structural stability of a network indicates the ability of the

network to maintain a sustainable service and/or to defend the

attacks from competitors. The leave of some nodes (aka the vertices

or the users) in a network can be contagious, causing the contin-

uous departure of other affected nodes and eventually breaking

the stability of the network, e.g., Friendster is suspended due to

engagement decline [17, 49]. Thus, it is essential to quantify the

importance of each node in a network and enhance the engagement

of the nodes according to their importance data [31, 38].

Complex networks are naturally modeled as graphs, in which

the 𝑘-core is defined as a (connected) maximal subgraph with each

vertex having at least 𝑘 neighbors (i.e., a degree of at least 𝑘) in the

subgraph [39, 48]. Accordingly, every vertex has a unique coreness
value: the largest 𝑘 s.t. the 𝑘-core contains the vertex. Given a graph,

core decomposition [2] iteratively removes every vertex with the

smallest degree in current graph s.t. the 𝑘-cores and the coreness

of each node can be computed. Existing works often adopt the

𝑘-core model on capturing node engagement, e.g., [3, 9, 31, 36,

38, 43, 54–57], because its degeneration property can naturally

capture the engagement dynamics in real-life networks. That is, the

iterative removal of the nodes with the smallest degree well models

the leaving sequence of users in the decline of a network. In [38],

the coreness of a node is first demonstrated as the “best practice”

on network structure for estimating its engagement. In [31], the

coreness of a node is validated as positively correlated with its

engagement data (its number of check-ins) in the Gowalla network.

Thus, the structural stability of a network can be expressed by the

coreness aggregation in the network.

Nevertheless, a node with high engagement is not certainly

important for sustaining network stability, since motivating or

protecting such a node may have a small effect on the engagement

of other nodes. Thus, for node strengthening, the importance of

a node 𝑢 is quantified by its anchor power, i.e., the coreness gain
of all other nodes if 𝑢 is anchored (the degree of 𝑢 is regarded as

+∞ and it will not be deleted in any batch of core decomposition)

[3]. We may give different incentives to the users according to

their anchor powers to motivate overall user engagement. Besides,

for node weakening, the importance of a node 𝑢 is quantified by

its collapse power, i.e., the coreness loss of all other nodes if 𝑢 is

collapsed (the degree of 𝑢 is regarded as 0 and it will be deleted in

the first batch of core decomposition) [56]. The leave of the users

with different collapse powers would break the network stability to

https://doi.org/10.1145/3580305.3599480
https://doi.org/10.1145/3580305.3599480
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Figure 1: Node Engagement (a) and Node Importance (b)

different extents. We should protect (encourage) the participation

of the users accordingly. The two powers are on different views:

applying the anchor power is to actively strengthen the engagement

of users while applying the collapse power is to protect the user

engagement from a defense view. To further motivate the study, the

performance of the above models on graph structure is validated

with real-life node importance data (Section 3).

Node motivation/protection by node importance can be applied

in various domains such as social networks, financial networks,

computer networks, and ecological networks. For instance, in mar-

keting campaigns across different social platforms, we can offer

incentives to users according to their importance, such as reward-

ing user interactions. We may also improve/sustain the stability of

a target community if we regard it as a network.

Example 1.1. Figure 1a shows a graph of 12 vertices and their

connections, the coreness of each vertex is marked near the vertex,

e.g., the coreness of 𝑣9 is 4. The 𝑘-core is induced by all the vertices

with coreness of at least 𝑘 , e.g., the 3-core is induced by 𝑣3, 𝑣4, ..., 𝑣11
and 𝑣12. We can see a vertex with a higher coreness is better en-

gaged in the graph. For node importance, as Figure 1b shows, the

user 𝑣2 has 3 anchored followers that are 𝑣3, 𝑣4 and 𝑣7 (coreness

increased by anchoring 𝑣2, marked in bold circles). The user 𝑣9 has

7 collapsed followers that are 𝑣5, 𝑣6, 𝑣7, 𝑣8, 𝑣10, 𝑣11 and 𝑣12 (coreness

decreased by collapsing 𝑣9, marked in dashed circles). As the num-

bers of followers are relatively large, 𝑣2 and 𝑣9 are more important

regarding anchor power and collapse power, respectively.

The anchor power (resp. collapse power) of a node 𝑢 equals the

number of anchored followers (resp. collapsed followers) of 𝑢, where
a follower of 𝑢 is a node with coreness changed for anchoring 𝑢

(resp. collapsing 𝑢). It is because the anchoring/collapsing of one

node can only change the coreness of another node by at most 1

[31, 54]. Thus, we aim to investigate and efficiently compute the

importance of each node regarding its follower sets. Besides, many

real networks are evolving (e.g., new friend relations, new web

links, etc) [28, 30, 35] and the change of anchor/collapse power can

be drastic for a simple graph update. Thus, we also aim to efficiently

maintain the follower sets for each node against graph dynamics.

Challenges. To the best of our knowledge, no existing work fo-

cuses on the importance study of every single node for network

stability. Core maintenance [58] is a streaming algorithm to update

the coreness value of each vertex, after an edge is inserted into or

removed from the graph. The computation of anchored/collapsed

followers can be simulated to core maintenance by adding edges

to the anchored vertex or removing edges from the collapsed ver-

tex. However, it is cost-prohibitive because one execution of core

maintenance can compute at most one follower set and we have to

repeatedly execute core decomposition many times.

Recent works on user engagement study aim to find the optimal

combination of 𝑏 anchored vertices [31] or 𝑏 collapsed vertices [54]

and focus on pruning unpromising combinations, where𝑏 is a given

budget. Our problem is budget-free as we compute the importance

of every single user, which is favored in the applications regarding

motivating/protecting a large percentage or all of the users in a

network. Different actions may be applied to the users with dif-

ferent importance levels on network stability. Our problem also

addresses the scenarios when there is no specified budget value or

the budget is not fixed with time evolves. The advanced algorithms

in above studies can be adapted as a baseline solution (Algorithm 1)

to compute the follower set of every vertex on a static graph, while

this is still not efficient enough on large graphs.

Regarding graph dynamics, after an edge insertion or removal,

both the coreness values and the anchor/collapse powers of many

vertices may change. As validated in our preliminary experiment, a

large portion of the vertices for anchoring/collapsing in the graph

will have their follower sets changed after a random removal of

1000 edges (up to 13% on the datasets in Section 6). Thus, it is

non-trivial to locate the candidate vertices for updating their an-

chored/collapsed followers, and we need to carefully track the

importances of all the vertices when the network evolves.

Our Solution. To address the challenges, we propose a novel frame-

work to compute and maintain the follower sets of each vertex. We

first divide the graph into multiple shell components1 formed by all

the maximal connected subgraphs where each vertex has the same

coreness. Thus, a follower set consists of some vertex subsets from

the shell components. For every vertex as a follower, the candidate

sets of its anchored/collapsed vertices can be tracked oppositely.

Therefore, we enumerate each shell component and compute the

followers in the component for each candidate anchored/collapsed

vertex (Algorithm 4) s.t. the proposed algorithm is more efficient

and has a lower time complexity compared with the baseline.

We also propose a novel maintenance algorithm to efficiently up-

date the follower sets of every vertex. When an edge is inserted into

or removed from the graph, we first apply core maintenance [58]

to update the coreness of each vertex. Then, the new induced shell

components are carefully collected, and the follower sets of any ver-

tex can be updated only based on the new shell components, where

the scale of new shell components for one inserted or removed

edge is often small. Due to the independent follower computation

of each candidate on the corresponding shell components, any par-

allel architecture can be utilized to accelerate both the static and

the dynamic algorithms.

Contributions. The main contributions of this paper are as follows.

1) We motivate the anchor/collapse power on quantifying node

importance over network structural stability by validating its per-

formance on real data (Section 3).

2) We formally prove that the candidate sets for anchoring or

collapsing can be located in fine granularity, where the follower

sets can be independently computed on each shell component and

efficiently parallelized (Section 5.1).

1
The shell components are more fine-grained than the core tree used in existing studies

[30, 31, 39, 46, 47, 54] where a tree node may correspond to multiple shell components.
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Figure 2: Different Ranking Metrics v.s. Ground-truth Node Engagement (#Reviews in Yelp)

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Year

0.5

1

1.5

2

M
et

ric
 E

ffe
ct

iv
en

es
s #Followers Coreness Degree Betweenness Closeness

(a) Importance of Anchored Users (Top 100 / The Rest)

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Year

0.5

1

1.5

2

M
et

ric
 E

ffe
ct

iv
en

es
s #Followers Coreness Degree Betweenness Closeness

(b) Importance of Collapsed Users (Top 100 / The Rest)

Figure 3: Effectiveness of Different Metrics by Relative Importance of the Selected Users (Dynamic of #Reviews in Yelp)

3) A dynamic algorithm is proposed to update the followers of

each node against edge insertion/removal (Section 5.2). We also

optimize the follower computation of one node (Section 5.3).

4) The experiments conducted on 9 real-life datasets validate that

the model of anchor/collapse power is effective and our proposed

algorithms are efficient (Section 6).

2 RELATEDWORK
The 𝑘-core [39, 48] is studied in various areas, e.g., community

discovery [13–15, 26, 27], spreader identification [20, 29, 37, 51],

and the applications of biology and ecology [1, 4, 43]. Core de-

composition algorithms are also studied under different computa-

tion environments [2, 8, 42, 53]. Network robustness metrics are

surveyed in [16, 33, 44] where the focuses are different from our

model, e.g., the centrality measures are built on information flow

[10, 24, 41, 52] while our anchor/collapse power is based on user

engagement. A node with a large centrality may be influential in

the information cascade while a node with a large anchor/collapse

power is important in sustaining the overall user engagement of

a network. As validated later, the coreness-based metrics can well

match the ground-truth node importance.

The anchor problems aim to find and enhance a small set of nodes

to improve coreness aggregation level [3, 31, 32]. The collapse prob-

lems hold a different view where a set of nodes are protected to

sustain a certain level of coreness aggregation [54, 56]. Anchor-

ing is also studied in motivating the smallest set of users s.t. an

improvement quota on stability is satisfied [34]. A variant of core-

ness loss is to delete a user set leading to the maximum number

of coreness-changed users [12]. Besides, edge manipulation is con-

sidered on network stability which adds promising new edges or

protects key existing links, e.g., [6, 23, 40, 50, 59, 60]. Different to

above network-level study, some works focus on the stability prob-

lems on communities, e.g., [5, 7]. Nevertheless, none of the above

works explore the importance of every node in a network and study

its efficient computation on both static and dynamic graphs.

3 ANALYSIS OF REAL DATA
To better motivate the study, we analyze the real data from Yelp

[11] to check whether the coreness of a node can well estimate

its engagement level and whether the anchor/collapse power of

a node can well match the importance of the node on sustaining

overall user engagement. The Yelp data contains a social network𝐺

including the users (vertices) and their friend relations (edges) and

the reviews (for Yelp POIs) written by the users with timestamps.

The evaluation on Brightkite data is in Appendices.

Case Study on Node Engagement.We first analyze the correla-

tion between node engagement and different vertex rankingmetrics

on the structure of 𝐺 including coreness, degree, betweenness cen-

trality [18] and closeness centrality [10]. The ground-truth engage-
ment of a user is represented by his/her number of reviews for all

the POIs in Yelp. Figure 2 depicts the average number of reviews for

the vertices with the same coreness (resp. degree, betweenness, or

closeness). Since computing the betweenness or closeness centrality

is costly, we randomly sample 1000 vertices to show their correla-

tion with node engagement. For degree and coreness, we compute

on all the vertices. We find that the engagement values may differ

a lot for the vertices with close degrees (resp. betweenness or close-

ness values), while coreness is clearly in a positive correlation with

node engagement. It is because core decomposition well models

the leaving sequence of users in the degeneration of a network.

The result of coreness is also better than other metrics, e.g., the

variants of centrality metrics [16, 33, 44]. The outperformance is

similar if we normalize the scores to the same granularity for every

metric. Therefore, for networks with the same scale (decided by the

number of vertices), a network with a larger coreness sum of all

the nodes is considered more stable on structure
2
.

Case Study on Node Importance. We further validate the match

of anchor/collapse power (i.e., the number of anchored/collapsed

followers) and node importance. To find the real importance data,

2
For networks with different scales, it is more appropriate to compare the average

coreness of the nodes.
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we need to check the behavior of real anchored/collapsed users.

Thus, for every two consecutive months in the Yelp data, we say

a user is an anchored user (resp. collapsed user) if his/her number

of reviews in the latter month is larger (resp. smaller) than the

former month. Recall that the importance of a node is quantified

by the effect on the engagement of other nodes if its engagement

is strengthened/weakened, i.e., the engagement dynamic of its an-

chored/collapsed followers. Therefore, the ground-truth importance
of an anchored user (resp. collapsed user) ismeasured by the average

variation of review numbers of his/her anchored (resp. collapsed)

followers between two consecutive months.

Then, we evaluate the anchored/collapsed users for each metric,

i.e., the number of anchored followers, the number of collapsed

followers, coreness, degree, betweenness, and closeness, respec-

tively. For each metric, the first group contains the top 100 users
3

according to their scores on the metric (e.g., the corenesses), and

the second group contains the rest users (793 users on average).

The metric effectiveness (𝑀𝐸) of a metric is measured by the gap of

overall node importance between the users selected by the metric

and the other users, i.e., the average ground-truth importance of

the first group divided by that of the second group.

As the node importance is based on the data on consecutive

months (the engagement dynamic of the followers), we report the

𝑀𝐸 of each metric for all the consecutive months. Figure 3 shows

the𝑀𝐸 from different metrics where each bar is the average value

from all consecutive months during one year and the error bar

shows the variance of 𝑀𝐸 from every month. Note that the an-

chor/collapse power (i.e., #Followers) performs the best for every
two consecutive months among the 11-year real data. It shows that,

for strengthening (resp. weakening) the users with large anchor

(resp. collapse) powers, the effect on other users (i.e., the impor-

tance) is larger than strengthening (resp. weakening) the users from

other metrics. Note that the result of anchor/collapse power is also

better than other variants, e.g., authority/hub centrality [21] on

bidirectional graphs. Thus, the anchor/collapse power is superior

for quantifying node importance on network structural stability.

4 PRELIMINARIES
We consider an unweighted and undirected graph 𝐺 = (𝑉 , 𝐸). The
notations are summarized in Table 1. We may omit 𝐺 in notations

when the context is clear, e.g., using 𝑑𝑒𝑔(𝑢) instead of 𝑑𝑒𝑔(𝑢,𝐺).

Definition 4.1 (𝑘-core4). Given a graph𝐺 and a positive integer 𝑘 ,

a subgraph𝐺 ′ is the 𝑘-core of𝐺 , denoted by𝐶𝑘 (𝐺), if (𝑖)𝐺 ′ satisfies
the degree constraint, i.e., 𝑑𝑒𝑔(𝑢,𝐺 ′) ≥ 𝑘 for each 𝑢 ∈ 𝑉 (𝐺 ′); and
(𝑖𝑖) 𝐺 ′ is maximal, i.e., any supergraph 𝐺 ′′ ⊃ 𝐺 ′ is not a 𝑘-core.

Given two integers 𝑘 and 𝑘 ′ with 𝑘 ≥ 𝑘 ′, the 𝑘-core is always
a subgraph of the 𝑘 ′-core, i.e., 𝐶𝑘 (𝐺) ⊆ 𝐶𝑘′ (𝐺). In addition, each

vertex in 𝐺 has a unique coreness value.

Definition 4.2 (coreness). Given a graph𝐺 , the coreness of a vertex

𝑢 ∈ 𝑉 (𝐺), denoted by 𝑐 (𝑢,𝐺), is the largest 𝑘 such that 𝐶𝑘 (𝐺)
contains 𝑢, i.e., 𝑐 (𝑢,𝐺) =𝑚𝑎𝑥{𝑘 | 𝑢 ∈ 𝐶𝑘 (𝐺)}.

3
As the reviews with timestamps are “recommended reviews” selected by Yelp [11],

the average number of anchored/collapsed users in one month is only 893.

4
In this paper, we do not require the 𝑘-core be connected as in [39, 48] and use 𝑘-core

to represent all the connected subgraphs satisfying Definition 4.1.

Table 1: Summary of Notations
Notation Definition

𝐺 an unweighted and undirected graph

𝑉 (𝐺) ; 𝐸 (𝐺) the vertex set of𝐺 ; the edge set of𝐺

𝑛;𝑚 |𝑉 (𝐺) |; |𝐸 (𝐺) | (assume𝑚 > 𝑛)

𝑁 (𝑢,𝐺) the set of neighbors of 𝑢 in𝐺

𝑑𝑒𝑔 (𝑢,𝐺) +∞ if 𝑢 is anchored, 0 if 𝑢 is collapsed, and

|𝑁 (𝑢,𝐺) | otherwise
𝐶𝑘 (𝐺) the 𝑘-core of𝐺

𝑐 (𝑢,𝐺) the original coreness of 𝑢 in𝐺

𝑐+𝑥 (𝑢,𝐺) ; 𝑐−𝑥 (𝑢,𝐺) the coreness of 𝑢 in𝐺 with anchoring/collapsing 𝑥
+F(𝑥,𝐺) ; −F(𝑥,𝐺) the anchored/collapsed follower set of 𝑥 in𝐺

𝐻𝑘 (𝐺) the 𝑘-shell of𝐺

SC[𝑣 ] the only shell component containing 𝑣

𝑆 ; 𝑆.𝑉 ; 𝑆.𝐸; 𝑆.𝑐 a shell component and its vertex set, edge set and

coreness value, respectively

A[𝑆 ]; C[𝑆 ] the anchor/collapser candidate set of 𝑆
+𝐹 [𝑥 ] [𝑆 ]; −𝐹 [𝑥 ] [𝑆 ] the anchored/collapsed follower set of 𝑥 in 𝑆

Given a graph 𝐺 , core decomposition is to compute the coreness

for each vertex 𝑣 ∈ 𝑉 (𝐺), which can be computed in 𝑂 (𝑚) time by

recursively deleting the vertex with the smallest degree in 𝐺 [19].

In this paper, once a vertex 𝑥 is anchored, its degree is regarded
as positive infinity (i.e., 𝑑𝑒𝑔(𝑥,𝐺) = +∞); once a vertex 𝑥 is col-
lapsed, its degree is regarded as zero (i.e., 𝑑𝑒𝑔(𝑥,𝐺) = 0). Note that

the existence of anchored/collapsed vertices does not change the

neighbor set of any vertex. An anchored vertex is also called an

anchor, and a collapsed vertex is also called a collapser, respectively.
In core decomposition, an anchored vertex will not be removed

as its degree is positive infinity; for every collapsed vertex, it will

be deleted at the first iteration of core decomposition as its degree

is zero. Thus, anchoring (resp. collapsing) a vertex may increase

(resp. decrease) the corenesses of other vertices.

When a vertex 𝑥 is anchored, we use 𝑐+𝑥 (𝑢,𝐺) to denote the

coreness of 𝑢 in 𝐺 with 𝑑𝑒𝑔(𝑥,𝐺) = +∞. A vertex with coreness

increased is called the anchored follower of 𝑥 .

Definition 4.3 (anchored follower set). Given a graph 𝐺 and an

anchor vertex 𝑥 , the anchored follower set of 𝑥 in 𝐺 is denoted

by
+F (𝑥,𝐺), formed by every vertex except 𝑥 with its coreness

increased after anchoring 𝑥 in 𝐺 , i.e.,
+F (𝑥,𝐺) = {𝑢 ∈ 𝑉 (𝐺) | 𝑢 ≠

𝑥 ∧ 𝑐+𝑥 (𝑢,𝐺) > 𝑐 (𝑢,𝐺)}.

When a vertex 𝑥 is collapsed, we use 𝑐−𝑥 (𝑢,𝐺) to denote the

coreness of 𝑢 in 𝐺 with 𝑑𝑒𝑔(𝑥,𝐺) = 0. A vertex with coreness

decreased is called the collasped followers of 𝑥 .

Definition 4.4 (collapsed follower set). Given a graph 𝐺 and a

collapser vertex 𝑥 , the collapsed follower set of 𝑥 in 𝐺 is denoted

by
−F (𝑥,𝐺), formed by every vertex except 𝑥 with its coreness

decreased after collapsing 𝑥 in 𝐺 , i.e.,
−F (𝑥,𝐺) = {𝑢 ∈ 𝑉 (𝐺) | 𝑢 ≠

𝑥 ∧ 𝑐−𝑥 (𝑢,𝐺) < 𝑐 (𝑢,𝐺)}.

In this paper, we aim to efficiently compute/maintain the an-

chored/collapsed follower sets for each vertex to capture its node

importance over network structural stability.

Problem Statement. Given a graph 𝐺 , for each 𝑣 ∈ 𝑉 (𝐺), we
compute

+F (𝑣,𝐺) and −F (𝑣,𝐺). When an edge is inserted into or

removed from 𝐺 , for each 𝑣 ∈ 𝑉 (𝐺), we maintain
+F (𝑣,𝐺) and

−F (𝑣,𝐺).
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Algorithm 1: Baseline(𝐺)
Input : 𝐺 : the graph

Output :
+F(𝑣,𝐺) and −F(𝑣,𝐺) for each 𝑣 ∈ 𝑉 (𝐺)

𝑐 (𝑢) ← the coreness of each 𝑢 ∈ 𝑉 (𝐺) ;1

for each 𝑢 ∈ 𝑉 (𝐺) in parallel do2

Compute
+F(𝑢) by Algorithm 4 of [31];3

for each 𝑢 ∈ 𝑉 (𝐺) with at least 1 follower [54] in parallel do4

Compute
−F(𝑢) by Algorithm 3 of [54];5

return +F(𝑣) and −F(𝑣) for each 𝑣 ∈ 𝑉 (𝐺)6

Baseline Algorithm. The baseline algorithm is based on state-

of-the-art algorithms on computing/maintaining the coreness of

every vertex and computing the anchored/collapsed followers. Al-

gorithm 1 shows the pseudo-code of the baseline. We first compute

the coreness of each vertex, by core decomposition [19] in the static

scenario, or by core maintenance in the dynamic scenario (Line

1). Then, we compute the anchored follower sets for each vertex 𝑢

(Lines 2-3) by Algorithm 4 of [31]. We enumerate each vertex with

at least 1 collapsed follower (Lines 4-5) and compute by Algorithm

3 of [54] to find collapsed followers. Algorithm 1 can be easily par-

allelized since the computation on each vertex from Line 2 or Line

4 is independent.

As the worst-case time cost of Algorithm 4 in [31] is 𝑂 (𝑚),
and Algorithm 3 in [54] is 𝑂 (𝑑𝑚𝑎𝑥 ·𝑚), the time complexity of

Algorithm 1 is 𝑂 (𝑛 · 𝑑𝑚𝑎𝑥 ·𝑚) where 𝑑𝑚𝑎𝑥 is the largest vertex

degree in 𝐺 . However, the baseline algorithm is still costly since it

has redundant computations when searching for followers. Besides,

for dynamic graphs, it needs to re-compute the followers for all the

vertices, which is cost-prohibitive.

5 OUR SOLUTION
We first introduce the shell component used in our algorithms.

Definition 5.1 (𝑘-shell). Given a graph𝐺 and a positive integer 𝑘 ,

the 𝑘-shell, denoted by 𝐻𝑘 (𝐺), is the set of vertices in 𝐺 with their

corenesses exactly equal to 𝑘 , i.e.,𝐻𝑘 (𝐺) = 𝑉 (𝐶𝑘 (𝐺))\𝑉 (𝐶𝑘+1 (𝐺)).

Definition 5.2 (shell component). Given a graph𝐺 and the 𝑘-shell

𝐻𝑘 (𝐺), a subgraph 𝑆 is a shell component of𝐻𝑘 (𝐺), if 𝑆 is amaximal

connected component of 𝐺 [𝐻𝑘 (𝐺)].

A 𝑘-shell is formed by the vertices of a series of non-overlapping

shell components. For each vertex in 𝐺 , there exists only one shell

component 𝑆 containing 𝑣 . Besides, in core decomposition, for a

given integer 𝑘 , the deletion sequence of the shell components of

𝐻𝑘 (𝐺) can be arbitrary.

Example 5.3. In Figure 4a, we have 𝐻1 (𝐺) = {𝑣1}, 𝐻2 (𝐺) =

{𝑣2}, 𝐻3 (𝐺) = {𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7} and 𝐻4 (𝐺) = {𝑣8, 𝑣9, 𝑣10, 𝑣11, 𝑣12}.
As circled in the figure, we have 5 shell components from 𝑆1 to

𝑆5, e.g., 𝑆3 and 𝑆4 are two shell components of 𝐻3 (𝐺). In core

decomposition of𝐺 , the deletion sequence of shell components can

be either (𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆5) or (𝑆1, 𝑆2, 𝑆4, 𝑆3, 𝑆5).

For a shell component 𝑆 of 𝐻𝑘 (𝐺), we denote 𝑆.𝑉 , 𝑆.𝐸 and 𝑆.𝑐

as the vertex set, edge set and the coreness of the vertices in 𝑆 ,

i.e., 𝑆.𝑉 = 𝑉 (𝑆), 𝑆.𝐸 = 𝐸 (𝑆) and 𝑆.𝑐 = 𝑐 (𝑣,𝐺) for any 𝑣 ∈ 𝑆.𝑉 .

We use the structure SC to index the shell components for all the

Algorithm 2: ShellDecomp(𝐺)
Input : 𝐺 : the graph

Output : SC : the index of shell components in𝐺

𝑐 (𝑢,𝐺) of each 𝑢 ∈ 𝑉 (𝐺) by core decomposition [19];1

for each 𝑢𝑛𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑢 ∈ 𝑉 (𝐺) do2

𝑆 ← a new shell component;3

𝑆.𝑐 ← 𝑐 (𝑢,𝐺) ; 𝑆.𝑉 ← 𝑆.𝑉 ∪ {𝑢 };4

𝑢 is set 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 ; ShellConnect(𝑢, 𝑆 , SC);5

SC[𝑢 ] ← 𝑆 ;6

return SC7

Algorithm 3: ShellConnect(𝑢, 𝑆 , SC)
Input : 𝑢 : a vertex, 𝑆 : the shell component containing 𝑢, SC : the

shell component index

for each 𝑣 ∈ 𝑁 (𝑢,𝐺) with 𝑐 (𝑣) = 𝑐 (𝑢) do1

𝑆.𝐸 ← 𝑆.𝐸 ∪ {(𝑢, 𝑣) };2

if 𝑣 is 𝑢𝑛𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 then3

𝑆.𝑉 ← 𝑆.𝑉 ∪ {𝑣 };4

𝑣 is set 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 ; ShellConnect(𝑣, 𝑆 , SC);5

SC[𝑣 ] ← 𝑆 ;6

vertices. For each 𝑣 ∈ 𝑉 (𝐺), SC[𝑣] is the only shell component

with 𝑣 ∈ SC[𝑣] .𝑉 .

Shell Component Computation. The shell components can be

computed in 𝑂 (𝑚) time by traversing the graph by a constant

number of times. Algorithms 2 and 3 illustrate the process of de-

composing each vertex into its shell component.

In Algorithm 2, firstly we need to conduct core decomposition

[19] on𝐺 to get the coreness of each vertex (Line 1). We traverse all

the vertices with each vertex marked 𝑢𝑛𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 by default (Line

2). Each time meeting an unassigned vertex 𝑢 ∈ 𝑉 (𝐺), we create a
new shell component 𝑆 (Line 3), set the related domains of 𝑆 and set

𝑢 as assigned (Lines 4-5). Then we call Algorithm 3 to recursively

collect all the vertices which should exist in 𝑆 (Line 5). After that,

we set SC[𝑢] by 𝑆 (Line 6). When all the vertices are set 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑

(by Algorithms 2 or 3), we can get SC.
In Algorithm 3, for the vertex 𝑢, we traverse each neighbor

𝑣 ∈ 𝑁 (𝑢,𝐺). If 𝑐 (𝑣) = 𝑐 (𝑢), we add the edge (𝑢, 𝑣) into 𝑆.𝐸 (Line

2). Note that (𝑢, 𝑣) and (𝑣,𝑢) are the same in our setting. Only if

𝑣 is unassigned (Line 3), we add 𝑣 into 𝑆.𝑉 and recursively call

Algorithm 3 to find all the vertices of 𝑆 (Lines 4-6).

5.1 Static Follower Computation
Theorems for Candidate Sets. For each shell component, its can-

didate anchor/collapser sets are limited by the following theorems.

Lemma 5.4. If a vertex 𝑥 is anchored in 𝐺 , the coreness of any
𝑢 ∈ 𝑉 (𝐺) \ {𝑥} will not decrease and may increase by at most 1 [31].

Lemma 5.5. If a vertex 𝑥 is collapsed in 𝐺 , the coreness of any
𝑢 ∈ 𝑉 (𝐺) \ {𝑥} will not increase and may decrease by at most 1 [54].

We define two affiliated structures for each shell component 𝑆 ,

denoted by the anchor candidate set A[𝑆] and the collapser candi-

date set C[𝑆]. The anchor candidate set (resp. collapser candidate
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Algorithm 4: StaticFollowerComputation(𝐺)
Input : 𝐺 : the graph

Output :
+F(𝑣,𝐺) and −F(𝑣,𝐺) for each 𝑣 ∈ 𝑉 (𝐺)

ˆS,A[·], C[·] ← ShellDecomp(𝐺);1

for each pair (𝑣, 𝑆) in parallel with 𝑣 ∈ A[𝑆 ] ∪ C [𝑆 ] and 𝑆 ∈ ˆS do2

if 𝑣 ∈ A[𝑆 ] then3
+𝐹 [𝑣 ] [𝑆 ] ← FindAnchoredFollowers(𝑣, 𝑆) ;4
+F(𝑣,𝐺) ← +F(𝑣,𝐺) ∪ +𝐹 [𝑣 ] [𝑆 ];5

else if 𝑣 ∈ C[𝑆 ] then6
−𝐹 [𝑣 ] [𝑆 ] ← FindCollapsedFollowers(𝑣, 𝑆) ;7
−F(𝑣,𝐺) ← −F(𝑣,𝐺) ∪ −𝐹 [𝑣 ] [𝑆 ];8

return +F(𝑣,𝐺) and −F(𝑣,𝐺) for each 𝑣 ∈ 𝑉 (𝐺)9

set) is the set of vertices that may affect the coreness of vertices in

𝑆.𝑉 if they are anchored (resp. collapsed).

Definition 5.6 (anchor candidate set). Given a shell component

𝑆 in graph 𝐺 , the anchor candidate set of 𝑆 , denoted by A[𝑆], is
A[𝑆] = 𝑆.𝑉 ∪ {𝑣 | 𝑣 ∈ 𝑉 (𝐺) ∧ 𝑐 (𝑣,𝐺) < 𝑆.𝑐 ∧ 𝑁 (𝑣,𝐺) ∩ 𝑆.𝑉 ≠ ∅}.

Definition 5.7 (collapser candidate set). Given a shell component

𝑆 in graph 𝐺 , the collapser candidate set of 𝑆 , denoted by C[𝑆], is
C[𝑆] = 𝑆.𝑉 ∪ {𝑣 | 𝑣 ∈ 𝑉 (𝐺) ∧ 𝑐 (𝑣,𝐺) > 𝑆.𝑐 ∧ 𝑁 (𝑣,𝐺) ∩ 𝑆.𝑉 ≠ ∅}.

We show that all the vertices in the same shell component have

the same anchor candidate set and collapser candidate set.

Theorem 5.8. If a vertex 𝑢 ∈ 𝑆.𝑉 is an anchored follower of vertex
𝑥 , we have 𝑥 ∈ A[𝑆].

Proof. The sketch: We assume 𝑥 ∉ A[𝑆] is a candidate anchor
and 𝑢 ∈ 𝑆.𝑉 is an anchored follower of 𝑥 . Then we consider the

deletion sequence of vertices in core decomposition without an-

choring any vertex and with anchoring 𝑥 , respectively, to check

the coreness change of every vertex. This will prove 𝑢 is not an

anchored follower of 𝑥 , which contradicts our assumption. The idea

also applies to the case of collapsing vertices. □

Note that the full proofs are in the appendices for all theorems.

Theorem 5.9. If a vertex 𝑢 ∈ 𝑆.𝑉 is a collapsed follower of vertex
𝑥 , we have 𝑥 ∈ C[𝑆].

Static Follower Computation.Here we present our follower com-

putation algorithm for static graphs in Algorithm 4. We first run

Algorithm 2 to obtain all the shell components of𝐺 and record them

in
ˆS (Line 1). For each 𝑆 ∈ ˆS, we also get A[𝑆] and C[𝑆] accord-

ingly, which can be accumulated when traversing the neighbors of

each vertex in computing the shell components.

Then, for each 𝑣 ∈ 𝑉 (𝐺) and a shell component 𝑆 , we define
+𝐹 [𝑣] [𝑆] = 𝑆.𝑉 ∩+F (𝑣,𝐺) and −𝐹 [𝑣] [𝑆] = 𝑆.𝑉 ∩−F (𝑣,𝐺) so as to
compute 𝑣 ’s followers in each atom unit, i.e., the shell component 𝑆 .

We know that for each shell component 𝑆 , its valid anchors and col-

lapsers (with at least one follower in 𝑆) can only from A[𝑆] (Theo-
rem 5.8) and C[𝑆] (Theorem 5.9), respectively. Thus, in Algorithm 4,

we compute
+𝐹 [𝑣] [𝑆] (resp. −𝐹 [𝑣] [𝑆]) w.r.t. every shell component

𝑆 in 𝐺 (Lines 2-8). The followers of one vertex (Lines 4 and 7) can

be computed by core decomposition with anchors/collapsers, and

the optimized algorithms are given in Section 5.3.
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As the shell component does not overlap with each other, we

can directly utilize shared-memory parallelization techniques to

compute
+𝐹 [𝑣] [𝑆] (resp. −𝐹 [𝑣] [𝑆]) for each vertex 𝑣 on each corre-

sponding shell component 𝑆 without any conflicts. Note that we

apply the parallelization at the vertex level rather than the shell

component level to reduce the workload imbalance.

Complexity Analysis. In Algorithm 4 , the accumulated size of

A[𝑆] ∪ C[𝑆] for every 𝑆 in 𝐺 is no larger than 𝑂 (𝑚) (Line 2). The
time cost of follower computation on one vertex by Line 4 or 7 is

𝑂 ( |𝑆 |𝑚𝑎𝑥 ) where |𝑆 |𝑚𝑎𝑥 is the largest size (the number of edges)

of a shell component. Thus, the time complexity of Algorithm 4 is

𝑂 (𝑚 · |𝑆 |𝑚𝑎𝑥 ). It is lower than the𝑂 (𝑛 ·𝑑𝑚𝑎𝑥 ·𝑚) time complexity of

Algorithm 1 because |𝑆 |𝑚𝑎𝑥 is often smaller than 𝑛 and is certainly

smaller than 𝑛 · 𝑑𝑚𝑎𝑥 .

Example 5.10. Figure 4a shows a graph with 5 shell components.

As there are 3 shell components 𝑆2, 𝑆3 and 𝑆4 with 𝑣2 ∈ A[𝑆2],
𝑣2 ∈ A[𝑆3] and 𝑣2 ∈ A[𝑆4], for the anchoring of 𝑣2, we can

compute
+𝐹 [𝑣2] [𝑆2], +𝐹 [𝑣2] [𝑆3] and +𝐹 [𝑣2] [𝑆4]. Then, we have

+𝐹 [𝑣2] [𝑆2] = ∅, +𝐹 [𝑣2] [𝑆3] = {𝑣3, 𝑣4} as 𝑐+𝑣2 (𝑣3) = 𝑐+𝑣2 (𝑣4) = 4, and

+𝐹 [𝑣2] [𝑆4] = {𝑣7} as 𝑐+𝑣2 (𝑣7) = 4. So,
+F (𝑣2,𝐺) = {𝑣3, 𝑣4, 𝑣7}.

Example 5.11. In Figure 4b, for the collapsing of 𝑣5, we compute

−𝐹 [𝑣5] [𝑆1] and −𝐹 [𝑣5] [𝑆4], as 𝑣5 ∈ C[𝑆1] and 𝑣5 ∈ C[𝑆4]. Since
𝑣5 ∉ C[𝑆5], we know there is no follower of collapsing 𝑣5 in 𝑆5.

Then, we have
−𝐹 [𝑣5] [𝑆1] = {𝑣1} as 𝑐−𝑣5 (𝑣1) = 0, and

−𝐹 [𝑣5] [𝑆4] =
{𝑣6} as 𝑐−𝑣5 (𝑣6) = 2. So,

−F (𝑣5,𝐺) = {𝑣1, 𝑣6}.

5.2 The Maintenance w.r.t. Edge Streaming
We consider the insertion/removal of a single edge which can also

be used to handle the streaming of multiple edges and vertices.

We maintain the anchored follower set
+F (𝑣,𝐺) and the collapsed

follower set
−F (𝑣,𝐺) for each 𝑣 ∈ 𝑉 (𝐺) by Algorithm 5. Specifi-

cally, before inserting/removing the edge (𝑣𝑠 , 𝑣𝑡 ), the currentSC[·],
A[·] and C[·] are stored in SC∗ [·], A∗ [·] and C∗ [·], respectively
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Algorithm 5: FollowerMaintenance((𝑣𝑠 , 𝑣𝑡 ), 𝐺)
Input : (𝑣𝑠 , 𝑣𝑡 ) : an edge to insert or remove,𝐺 : the graph before

inserting/removing (𝑣𝑠 , 𝑣𝑡 ) , SC[·], A[·] and C[·] of𝐺
Output :

+F(𝑣,𝐺) and −F(𝑣,𝐺) for each 𝑣 with changed followers

SC∗ [· ], A∗ [· ], C∗ [· ] ← SC[·], A[·], C[·];1

ˆS ← the new shell component set;𝑉 ∗ ← ∅;2

if 𝑐 (𝑣𝑠 ,𝐺) = min{𝑐 (𝑣𝑠 ,𝐺), 𝑐 (𝑣𝑡 ,𝐺) } then𝑉 ∗ ← 𝑉 ∗ ∪ SC∗ [𝑣𝑠 ] .𝑉 ;3

if 𝑐 (𝑣𝑡 ,𝐺) = min{𝑐 (𝑣𝑠 ,𝐺), 𝑐 (𝑣𝑡 ,𝐺) } then𝑉 ∗ ← 𝑉 ∗ ∪ SC∗ [𝑣𝑡 ] .𝑉 ;4

(𝑣𝑠 , 𝑣𝑡 ) is inserted into or removed from𝐺 ;5

Update 𝑐 (𝑢,𝐺) for each 𝑢 ∈ 𝑉 (𝐺) by core maintenance [58];6

/* compute new shell components */

for each 𝑢𝑛𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑢 ∈ 𝑉 ∗ do7

𝑆∗ ← a new shell component;8

𝑆∗ .𝑐 ← 𝑐 (𝑢,𝐺) ; 𝑆∗ .𝑉 ← 𝑆∗ .𝑉 ∪ {𝑢 };9

𝑢 is set 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 ; ShellConnect(𝑢, 𝑆∗, SC∗);10

Replace SC∗ [𝑢 ] by 𝑆∗ in SC∗;11

ˆS = ˆS ∪ {𝑆∗ };12

A∗ [· ] and C∗ [· ] are updated while doing Lines 7-12;13

𝑈 ← ⋃
𝑆∗∈ ˆS 𝑆

∗ .𝑉 ;14

/* remove expired followers on old shell components */

for each pair (𝑣, 𝑆) in parallel with 𝑣 ∈ A[𝑆 ] ∪ C [𝑆 ] and15

𝑆 ∈ ⋃𝑢∈𝑈 {SC[𝑢 ] } do
if 𝑣 ∈ A[𝑆 ] then16

+F(𝑣,𝐺) ← +F(𝑣,𝐺) \ +𝐹 [𝑣 ] [𝑆 ];17

else if 𝑣 ∈ C[𝑆 ] then18
−F(𝑣,𝐺) ← −F(𝑣,𝐺) \ −𝐹 [𝑣 ] [𝑆 ];19

/* compute new followers on new shell components */

Run Lines 2-9 of Algorithm 4 with
ˆS, A∗ [· ] and C∗ [· ];20

SC[·], A[·], C[·] ← SC∗ [· ], A∗ [· ], C∗ [· ];21

return the result of Line 2022

(Line 1), and they will be properly updated. Then we compute the

set 𝑉 ∗ which contains all the vertices to update corenesses for the

insertion/removal of (𝑣𝑠 , 𝑣𝑡 ) (Lines 2-4). We use
ˆS to record all the

new shell components and each vertex is set to unassigned initially.

After inserting/removing (𝑣𝑠 , 𝑣𝑡 ) (Line 5), we adopt the state-of-
the-art algorithm of core maintenance in [58] to update 𝑐 (𝑢,𝐺) for
each𝑢 ∈ 𝑉 (𝐺) (Line 6). Lines 7-12 collect the new shell components

into
ˆS. Without the need to call Algorithm 2 again for the whole

graph, the maintenance on shell components only starts from each

vertex𝑢 in𝑉 ∗ (Line 7). Lines 8-12 do the same operations as Lines 3-

6 of Algorithm 2 to compute the new shell component set
ˆS. Please

note thatA∗ [·] and C∗ [·] can be updated straightforwardly during

Lines 7-12 according to their definitions (Line 13), because only

A∗ [𝑆∗] and C∗ [𝑆∗] for each 𝑆∗ ∈ ˆS need to be updated. We denote

an updated vertex set as 𝑈 =
⋃

𝑆∗∈ ˆS 𝑆
∗ .𝑉 (Line 14). By traversing

all the old shell components containing the vertices in𝑈 , we can

remove all the expired anchored followers and collapsed followers

(Lines 15-19). At last, for the new shell component set
ˆS, we call

Algorithm 4 on
ˆS along with the updated A∗ [·] and C∗ [·] (Line

20) to compute the new followers. Finally, we put SC∗ [·], A∗ [·]
SC[·] back into SC[·], A[·] and C[·] for using in the next edge

updating request. As in Algorithm 4, Lines 15-20 of Algorithm 5

can be straightforwardly parallelized.

Algorithm 6: FindCollapsedFollowers(𝑥 , 𝑆)
Input : 𝑥 : a collapser in C[𝑆 ], 𝑆 : a shell component

Output :
−𝐹 [𝑥 ] [𝑆 ] : the collapsed follower set of 𝑥 in 𝑆

𝑄 ← a queue;1

If 𝑥 ∈ 𝑆.𝑉 then 𝑥 is set discarded;𝑄.𝑝𝑢𝑠ℎ (𝑥) ;2

else3

𝐻𝑆 (𝑢) ← 𝐻𝑆 (𝑢) − 1;𝑄.𝑝𝑢𝑠ℎ (𝑢) for each 𝑢 ∈ 𝑁 (𝑥, 𝑆)4

while𝑄 ≠ ∅ do5

𝑢 ← 𝑄.𝑝𝑜𝑝 () ;6

if 𝑢 ≠ 𝑥 then7

𝑑+ (𝑢) ← 𝐻𝑆 (𝑢) + | {𝑣 | 𝑣 ∈ 𝑁 (𝑢, 𝑆) ∧ 𝑣 𝑖𝑠 𝑛𝑜𝑡 discarded} |;8

If 𝑑+ (𝑢) < 𝑆.𝑐 then 𝑢 is set discarded;9

if 𝑢 is discarded then10

for each 𝑣 ∈ 𝑁 (𝑢, 𝑆) with 𝑣 is not discarded and 𝑣 ∉ 𝑄 do11

𝑄.𝑝𝑢𝑠ℎ (𝑣) ;12

−𝐹 [𝑥 ] [𝑆 ] ← discarded vertices in 𝑆.𝑉 \ {𝑥 } ;13

return −𝐹 [𝑥 ] [𝑆 ]14

Example 5.12. In Figure 5a, we remove the edge (𝑣3, 𝑣4) from
the graph. In the update of shell components (Lines 7-12), 𝑆2 and

𝑆3 are replaced (Line 11) with the new shell components, i.e., the

new 𝑆∗
6
with 𝑆∗

6
.𝑉 = {𝑣2, 𝑣4} and 𝑆∗

6
.𝑐 = 2, and the new 𝑆∗

7
with

𝑆∗
7
.𝑉 = {𝑣3} and 𝑆∗

7
.𝑐 = 3. The anchor and collapser candidate sets

of 𝑆1, 𝑆4 and 𝑆5 remain the same, and the vertices in the above

two sets have the unchanged followers on 𝑆1, 𝑆4 and 𝑆5. Thus, we

only need to recompute the followers ofA∗ [𝑆∗
6
] and C∗ [𝑆∗

6
] on 𝑆∗

6
,

and the followers of A∗ [𝑆∗
7
] and C∗ [𝑆∗

7
] on 𝑆∗

7
, e.g., we compute

+𝐹 [𝑣2] [𝑆∗
6
] = {𝑣4} and we know

+𝐹 [𝑣2] [𝑆4] is not changed.

Example 5.13. In Figure 5b, we insert the edge (𝑣2, 𝑣3) into the
graph. 𝑆2, 𝑆3 and 𝑆4 are replaced with the new 𝑆∗

8
. We have 𝑆∗

8
.𝑉 =

{𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7} and 𝑆∗
8
.𝑐 = 3. The anchor and collapser can-

didate sets of 𝑆1 and 𝑆5 remain the same, and the vertices in the

above two sets have unchanged followers on 𝑆1 and 𝑆5. Only the

followers of A∗ [𝑆∗
8
] and C∗ [𝑆∗

8
] on 𝑆∗

8
need to be recomputed.

Theorem 5.14. For the insertion or removal of (𝑣𝑠 , 𝑣𝑡 ), Algorithm 5
correctly updates +F (𝑣,𝐺) and −F (𝑣,𝐺) for each 𝑣 ∈ 𝑉 (𝐺).

Complexity Analysis. In Algorithm 5, Lines 1-19 can be finished

in 𝑂 (𝑚) time since they traverse 𝐺 by a constant number. So, the

time complexity of Algorithm 5 is 𝑂 (𝑚 +𝑚∗ · |𝑆∗ |𝑚𝑎𝑥 ) where𝑚∗
is the accumulated size of A∗ [𝑆∗] ∪ C∗ [𝑆∗] for every 𝑆∗ in ˆS and

|𝑆∗ |𝑚𝑎𝑥 is the largest size of a shell component in
ˆS.

5.3 Computation of Followers for One Vertex
Let 𝐻𝑆 (𝑢) denote higher coreness support of a vertex 𝑢, i.e., the

number of 𝑢’s neighbors with larger corenesses than 𝑢. We have

𝐻𝑆 (𝑢) = |{𝑣 | 𝑣 ∈ 𝑁 (𝑢,𝐺) ∧ 𝑐 (𝑣) > 𝑐 (𝑢)}|.
Collapsed Followers Computation. We use Algorithm 6 to com-

pute
−𝐹 [𝑥] [𝑆] which utilizes a queue 𝑄 (Line 1) to explore the

collapsed followers starting from the collapser vertex 𝑥 . If 𝑥 ∈ 𝑆.𝑉 ,

𝑥 is set discarded and pushed into 𝑄 (Line 2). Note that, all the

vertices in 𝑆.𝑉 are not discarded initially, and any discarded ver-

tex (except 𝑥) becomes a collapsed follower. If 𝑥 ∉ 𝑆.𝑉 , for each

𝑢 ∈ 𝑁 (𝑥, 𝑆), we reduce 𝐻𝑆 (𝑢) by 1 and push 𝑢 into 𝑄 (Lines 3-4).
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Algorithm 7: FindAnchoredFollowers(𝑥 , 𝑆)
Input : 𝑥 : an anchor in A[𝑆 ], 𝑆 : a shell component

Output :
+𝐹 [𝑥 ] [𝑆 ] : the anchored follower set of 𝑥 in 𝑆

𝐻 ← a min heap w.r.t. the layer value of each vertex;1

If 𝑥 ∈ 𝑆.𝑉 then 𝑥 is set survived; 𝐻.𝑝𝑢𝑠ℎ (𝑥) ;2

else3

𝐻𝑆 (𝑢) ← 𝐻𝑆 (𝑢) + 1; 𝐻.𝑝𝑢𝑠ℎ (𝑢) for each 𝑢 ∈ 𝑁 (𝑥, 𝑆) ;4

while 𝐻 ≠ ∅ do5

𝑢 ← 𝐻.𝑝𝑜𝑝 () ;6

𝑉 ≤ ← {𝑣 | 𝑣 ∈ 𝑁 (𝑢, 𝑆) ∧𝑙 (𝑣) ≤ 𝑙 (𝑢) ∧ (𝑣 𝑖𝑠 survived∨𝑣 ∈ 𝐻 ) };7

𝑉 > ← {𝑣 | 𝑣 ∈ 𝑁 (𝑢, 𝑆) ∧ 𝑙 (𝑣) > 𝑙 (𝑢) ∧ 𝑣 𝑖𝑠 𝑛𝑜𝑡 discarded};8

if 𝑢 ≠ 𝑥 then9

𝑑+ (𝑢) ← 𝐻𝑆 (𝑢) + |𝑉 ≤ | + |𝑉 > |;10

If 𝑑+ (𝑢) ≥ 𝑆.𝑐 + 1 then 𝑢 is set survived;11

if 𝑢 is survived then12

for each 𝑣 ∈ 𝑁 (𝑢, 𝑆) with 𝑙 (𝑣) > 𝑙 (𝑢) and 𝑣 ∉ 𝐻 do13

𝐻.𝑝𝑢𝑠ℎ (𝑣) ;14

else15

𝑢 is set discarded; Shrink(𝑢, 𝑆) (Algorithm 8) ;16

+𝐹 [𝑥 ] [𝑆 ] ← survived vertices in 𝑆.𝑉 \ {𝑥 } ;17

return +𝐹 [𝑥 ] [𝑆 ]18

Algorithm 8: Shrink(𝑢, 𝑆)
Input : 𝑢 : the vertex to shrink, 𝑆 : a shell component

for each survived vertex 𝑣 ∈ 𝑁 (𝑣, 𝑆) with 𝑣 ≠ 𝑥 do1

𝑑+ (𝑣) ← 𝑑+ (𝑣) − 1;2

If 𝑑+ (𝑣) < 𝑆.𝑐 + 1 then 𝑣 is set discarded;𝑇 ← 𝑇 ∪ {𝑣 };3

Shrink(𝑣) for each 𝑣 ∈ 𝑇 ;4

Then we traverse𝑄 until it becomes empty (Line 5). Each time when

we pop a vertex 𝑢 (Line 6), if 𝑢 ≠ 𝑥 , we need to decide whether it

should be discarded (Lines 7-9). If 𝑢 is set discarded, we push each

undiscarded 𝑣 ∈ 𝑁 (𝑢, 𝑆) \𝑄 into 𝑄 (Lines 10-12). After traversing

𝑄 , all the discarded vertices in 𝑆.𝑉 except 𝑥 form
−𝐹 [𝑥] [𝑆].

Anchored Followers Computation. We use Algorithm 7 to com-

pute
+𝐹 [𝑥] [𝑆] which adapts Algorithm 4 of [31]. The main idea

is utilizing the layer value of each vertex, i.e., the deletion batch

(layer) in core decomposition. We use 𝐿𝑖
𝑘
to denote the 𝑖-layer of

the 𝑘-shell. Specifically, when 𝑖 = 1, we have 𝐿1
𝑘

= {𝑢 | 𝑢 ∈
𝐶𝑘 (𝐺) ∧𝑑𝑒𝑔(𝑢,𝐶𝑘 (𝐺)) < 𝑘 +1}; when 𝑖 > 1, we have 𝐿𝑖

𝑘
= {𝑢 | 𝑢 ∈

𝐺𝑖
𝑘
∧𝑑𝑒𝑔(𝑢,𝐺𝑖

𝑘
) < 𝑘 + 1} where𝐺𝑖

𝑘
= 𝐺 [𝑉 (𝐶𝑘 (𝐺)) \

⋃
1≤ 𝑗≤𝑖−1 𝐿

𝑗

𝑘
].

We denote 𝑙 (𝑢) = 𝑖 if 𝑢 ∈ 𝐿𝑖
𝑘
as the unique layer value of 𝑢.

In Algorithm 7, we utilize a min heap 𝐻 (Line 1) to traverse the

potential followers (except 𝑥), where the key is the layer value of

each vertex
5
. Please note that any vertex in 𝑆.𝑉 is neither discarded

or survived unless it is explicitly set so, and all the survived vertices

form the follower set except 𝑥 . Note that a survived vertex may still

be discarded later due to the deletion cascade.

If 𝑥 ∈ 𝑆.𝑉 , 𝑥 is set survived and pushed into𝐻 (Line 2). If 𝑥 ∉ 𝑆.𝑉 ,

for each 𝑢 ∈ 𝑁 (𝑥, 𝑆), we increment 𝐻𝑆 (𝑢) by 1 and push 𝑢 into

𝐻 (Lines 3-4). Then we traverse 𝐻 until it becomes empty (Line

5
The complexity can be optimized by using a set of buckets to simulate 𝐻 .

Table 2: Statistics of Datasets
Dataset Nodes Edges 𝑑𝑚𝑎𝑥 𝑘𝑚𝑎𝑥 |𝑆 |𝑚𝑎𝑥

Brightkite 58,228 214,078 1,134 52 11,838

Github 37,700 289,003 9,458 34 20,976

Gowalla 196,591 950,327 14,730 51 14,060

NotreDame 325,729 1,090,108 10,721 155 215,052

Stanford 281,903 1,992,636 38,625 71 89,688

Youtube 1,134,890 2,987,624 28,754 51 72,726

DBLP 1,566,919 6,461,300 1,522 118 89,276

Yelp 1,032,416 17,971,548 6,367 165 269,238

Orkut 3,072,441 117,185,083 33,313 253 6,889,284

5). When we pop a vertex 𝑢 (Line 6), if 𝑢 ≠ 𝑥 , we need to decide

whether it can be set survived (Lines 7-11), where we compute a

degree upper bound 𝑑+ (𝑢) at Line 10. The vertices in𝑉 ≤ or𝑉 >
are

the neighbors of 𝑢 which may become its followers. If 𝑢 is survived,
we push each unvisited potential follower into𝐻 (Lines 12-14). Once

a vertex is set discarded, it may cause a cascade of vertex discarding,

computed by Algorithm 8 (Lines 15-16). After traversing 𝐻 , all the

survived vertices in 𝑆.𝑉 except 𝑥 form
+𝐹 [𝑥] [𝑆].

Complexity Analysis. The neighbor set 𝑁 (·, 𝑆), higher coreness
support 𝐻𝑆 (·) and layer value 𝑙 (·) can be incidentally computed

when traversing the neighbors of each vertex in Algorithm 2, as

the visiting sequence can be decided by different shell components.

Either Algorithm 6 or 7 traverses the graph by a constant number.

Thus, the time complexity is 𝑂 ( |𝑆 |) for both algorithms, where |𝑆 |
is the number of edges in 𝑆 .

Example 5.15. To compute
+𝐹 [𝑣2] [𝑆3] on the graph in Figure 4a,

we execute Algorithm 7. As 𝑣2 ∉ 𝑆3 .𝑉 , we have 𝐻𝑆 (𝑣4) = 2 + 1 = 3

(originally 𝐻𝑆 (𝑣4) = 2 w.r.t. 𝑣11 and 𝑣12) and 𝑣4 is pushed into 𝐻

(Line 4). After 𝑣4 is popped (Line 6), we compute 𝑑+ (𝑣4) (Line 10).
Because 𝑙 (𝑣4) = 1, 𝑙 (𝑣3) = 2 and 𝑣3 is not discarded, we have𝑉 ≤ = ∅
and 𝑉 > = {𝑣3}. So, 𝑑+ (𝑣4) = 3 + 0 + 1 = 4. Since 𝑆3 .𝑐 = 3, 𝑣4 is

set survived (Line 11) and 𝑣3 is pushed into 𝐻 (Line 14). Then 𝑣3 is

popped and 𝑑+ (𝑣3) = 3 + 1 + 0 = 4 as 𝐻𝑆 (𝑣3) = 3, 𝑉 ≤ = {𝑣4} and
𝑉 > = ∅. So 𝑣3 is set survived and no more vertex is pushed into 𝐻 .

Finally, we return
+𝐹 [𝑣2] [𝑆3] = {𝑣3, 𝑣4}.

6 EXPERIMENTAL EVALUATION
Datasets. We use 9 real-life datasets, where NotreDame, Stanford
and DBLP are from [22], Yelp is from [11], and the others are from

[25]. We clean self loops and multiple edges in the datasets. Each

directed edge is regarded as undirected. Table 2 shows the statistics

of the datasets, where 𝑑𝑚𝑎𝑥 is the largest vertex degree, 𝑘𝑚𝑎𝑥 is the

largest vertex coreness and |𝑆 |𝑚𝑎𝑥 is the largest number of edges

in a shell component. We may abbreviate the name of a dataset by

the bold and underlined characters as shown in the table.

Algorithms.We evaluate the following algorithms: (i) Baseline:
computing the follower sets of each vertex based on the state-

of-the-art (Algorithm 1); (ii) Static: our new framework to com-

pute the follower sets with shell components (Algorithm 4); (iii)

Maintenance: our maintenance algorithm to update the follower

sets of each vertex (Algorithm 5).

Environments. The experiments are conducted on a CentOS Linux

server (Release 7.5.1804) equipped with a Quad-Core Intel Xeon
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CPU (E5-2640 v4 @ 2.20GHz, 25MB Cache) and 128GB memory.

All algorithms are implemented using C++11, with the source code

compiled by GCC (7.3.0) under -O3 optimization. For shared mem-

ory multiprocessing programming, we employed OpenMP.

Our source code is shared at https://github.com/Xiejiadong/.

6.1 Main Experimental Results
Effectiveness of Anchor/Collapse Power. For the evaluation of

model effectiveness, please refer to the results in Section 3. Some

additional results on effectiveness are in the appendices.

Time Cost of Different Algorithms. In Figure 6, we report the

runtime of Baseline, Static and Maintenance. We use 8 threads

for each algorithm. For sequential performance, the runtime gap be-

tween different algorithms is very similar to the gap with 8 threads.

To test real structure difference, we randomly remove 100 edges and

insert them back into each dataset, for the maintenance algorithms.

Each time an edge is removed or inserted, we record the time cost

of computing both the anchored and collapsed followers for all the

vertices and report the average runtime of 100 edges.

Figure 6 shows that Static is faster than Baseline by around 1

order of magnitude. It is consistent with the lower time complexity

of Static compared with Baseline, as analyzed at the end of Sec-

tion 5.1. Besides, Maintenance outperforms the static algorithms

by orders of magnitude. This is more significant than the difference

in time complexities, because the search space of Maintenance is
often much smaller than the worst case. We also add the error bars

to show the variance of time cost among the 100 edge removals and

100 edge insertions, respectively. We find that in the worst cases,

the time cost of Maintenance is still less than other algorithms.

In the experiments, edge insertion is often faster than removal

in Maintenance. It is because a shell component 𝑆 may be split

into 𝑆1 and 𝑆2 by edge removal, and a vertex in anchor candi-

date set 𝐴[𝑆] may be visited twice in both 𝐴∗ [𝑆1] and 𝐴∗ [𝑆2] at
Line 20 of Algorithm 5. Thus, the number of candidate vertices

to update/check their anchored followers can be larger after edge

removal, because |𝐴∗ [𝑆1] | + |𝐴∗ [𝑆2] | >= |𝐴[𝑆] |. Correspondingly,
we also have |𝐶∗ [𝑆1] | + |𝐶∗ [𝑆2] | >= |𝐶 [𝑆] |. The computation on

split shell components is more costly and edge insertion will not

split a shell component. The gap in candidate number and time cost

is consistent with the result in Figures 6 and 7, respectively.
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Figure 8: Parallelization on Static and Maintenance

Number of Candidate Vertices to Update Follower Sets. On
each dataset, we randomly remove 100 edges and then insert 100

edges back. Each time an edge is removed or inserted, we record the

number of candidate vertices whose follower sets may be updated,

i.e., A∗ [·] and C∗ [·] in Algorithm 5. In Figure 7, the bars show the

average number of candidate vertices w.r.t one edge insertion or

removal. We can find that a single edge update can cause 10
1
to

10
4
vertices to update their followers. We also add the error bar

on each box to show the variance of the number of candidates to

update among the removal and insertion of 100 edges, respectively.

Performance of Parallelization. Figures 8(a-b) report the per-
formance of Static regarding collapsed follower computation (Al-

gorithm 6) and anchored follower computation (Algorithm 7), re-

spectively. We can find that the time cost with 8 threads is much

smaller than the sequential cost, where the speedup is up to 6.8x

for anchoring and 6.5x for collapsing, respectively. Figures 8(c-d)

show the performance of Maintenance regarding edge insertion or

removal. We mark the speedup ratio between 1 thread and 8 threads

in each subfigure, which shows the advantage of our algorithms in

separating the computation into atom units.

7 CONCLUSION
In this paper, we study the model of anchored/collapsed power.

We validate the coreness value is positively correlated with node

engagement, and the match between the anchored/collapsed power

and node importance over network structural stability. A novel

framework is proposed to compute the anchored/collapsed power of

every node on both static and dynamic graphs, with well-designed

optimizations. The experiments on 9 real-life datasets demonstrate

the effectiveness of the model and the efficiency of our algorithms.
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8 APPENDICES
8.1 Proofs of Theorems
Proof of Theorem 5.8. We prove it by contradiction. We as-

sume 𝑥 ∉ A[𝑆] and there is a vertex 𝑢 ∈ 𝑆.𝑉 with coreness

increased by anchoring 𝑥 (i.e., 𝑢 is an anchored follower of 𝑥).

According to the definition of A[𝑆], we have the following pos-

sible situations: 1) 𝑐 (𝑥,𝐺) > 𝑆.𝑐; 2) 𝑐 (𝑥,𝐺) = 𝑆.𝑐 ∧ 𝑥 ∉ 𝑆.𝑉 ; 3)

𝑐 (𝑥,𝐺) < 𝑆.𝑐 ∧ 𝑁 (𝑥,𝐺) ∩ 𝑆.𝑉 = ∅.
For situation 1), no matter 𝑥 is anchored or not, 𝑥 is always

deleted after 𝑢 in core decomposition [19], i.e., the vertex deletion

sequence before removing 𝑢 is same. So we have 𝑐+𝑥 (𝑢) = 𝑐 (𝑢)
which contradicts with our assumption.

For situation 2), we first consider the vertex deletion sequence in

core decomposition without anchoring 𝑥 . After all the vertices with

coreness less than 𝑆.𝑐 are deleted, for each 𝑆 ′ ≠ 𝑆 and 𝑆 ′.𝑐 = 𝑆.𝑐 ,

it is feasible to delete 𝑆.𝑉 before each 𝑆 ′.𝑉 in core decomposition.

After deleting 𝑆.𝑉 , we denote the deleted vertex set so far as 𝑉𝑑
.

Because 𝑐 (𝑥) = 𝑆.𝑐 and 𝑥 ∉ 𝑆.𝑉 , we have 𝑥 ∉ 𝑉𝑑
. Then, we con-

sider the core decomposition with anchoring 𝑥 . As 𝑥 ∉ 𝑉𝑑
, we can

still delete 𝑉𝑑
following the same vertex deletion sequence. Thus

for each 𝑣 ∈ 𝑉𝑑
, 𝑐+𝑥 (𝑣) = 𝑐 (𝑣). Since 𝑢 ∈ 𝑆.𝑉 ⊆ 𝑉𝑑

, 𝑢 is not an

anchored follower of 𝑥 , which contradicts with our assumption.

For situation 3), we first consider the core decomposition with-

out anchoring 𝑥 . For each 𝑣 ∈ 𝑆.𝑉 , we denote 𝑁< (𝑣) = {𝑤 | 𝑤 ∈
𝑁 (𝑣,𝐺) ∧ 𝑐 (𝑤) < 𝑆.𝑐} and 𝑁> (𝑣) = {𝑤 | 𝑤 ∈ 𝑁 (𝑣,𝐺) ∧ 𝑐 (𝑤) >
𝑆.𝑐}; we have |𝑁 (𝑣, 𝑆) ∪ 𝑁> (𝑣) | < 𝑆.𝑐 + 1 as 𝑐 (𝑣) = 𝑆.𝑐 . Then,

we consider the core decomposition with anchoring 𝑥 . For each

𝑤 ∈ 𝑁< (𝑣) subject to each 𝑣 ∈ 𝑆.𝑉 , we have 𝑤 ≠ 𝑥 by situation

3) and 𝑐+𝑥 (𝑤) < 𝑆.𝑐 + 1 by Lemma 5.4. Thus each above𝑤 is not in

the (𝑆.𝑐 + 1)-core. Now consider each 𝑣 ∈ 𝑆.𝑉 . Let𝑊 denote the

set consists of each 𝑤 ∈ 𝑁< (𝑣) with 𝑐+𝑥 (𝑤) = 𝑆.𝑐 . The vertices in

𝑁< (𝑣) \𝑊 is still deleted before the removal of 𝑣 . Then, it is feasible

to delete𝑊 before 𝑣 since𝑊 is not in the (𝑆.𝑐 + 1)-core. Then we

still have |𝑁 (𝑣, 𝑆) ∪ 𝑁> (𝑣) | < 𝑆.𝑐 + 1. Thus, 𝑣 is not an anchored

follower of 𝑥 . As 𝑢 ∈ 𝑆.𝑉 , this contradicts with our assumption. □

Proof of Theorem 5.9. We prove it by contradiction. We as-

sume 𝑥 ∉ C[𝑆] and there is a vertex 𝑢 ∈ 𝑆.𝑉 with coreness

decreased by collapsing 𝑥 (i.e., 𝑢 is an collapsed follower of 𝑥).

According to the definition of C[𝑆], we have the following pos-

sible situations: 1) 𝑐 (𝑥,𝐺) < 𝑆.𝑐; 2) 𝑐 (𝑥,𝐺) = 𝑆.𝑐 ∧ 𝑥 ∉ 𝑆.𝑉 ; 3)

𝑐 (𝑥,𝐺) > 𝑆.𝑐 ∧ 𝑁 (𝑥,𝐺) ∩ 𝑆.𝑉 = ∅.
For situation 1), no matter 𝑥 is collapsed or not, 𝑥 is always

deleted before 𝑢 in core decomposition [19], so that 𝑐−𝑥 (𝑢) = 𝑐 (𝑢)
which contradicts with our assumption.

For situation 2), we first consider the vertex deletion sequence in

core decomposition without collapsing 𝑥 . After all the vertices with

coreness less than 𝑆.𝑐 are deleted, for each 𝑆 ′ ≠ 𝑆 and 𝑆 ′.𝑐 = 𝑆.𝑐 , it

is feasible to delete 𝑆 ′.𝑉 before 𝑆.𝑉 in core decomposition. After

the deletion of every above 𝑆 ′, the remaining graph 𝐺 ′ still has
𝑑𝑒𝑔(𝑣,𝐺 ′) ≥ 𝑆.𝑐 for each 𝑣 ∈ 𝑆.𝑉 . We denote the deleted (resp.

remaining) vertex set so far as𝑉𝑑
(resp.𝑉 𝑟

). For each 𝑣 ∈ 𝑉 𝑟 \ 𝑆.𝑉 ,

we have 𝑐 (𝑣) > 𝑆.𝑐 . Because 𝑐 (𝑥) = 𝑆.𝑐 and 𝑥 ∉ 𝑆.𝑉 , we can ensure

𝑥 ∈ 𝑉𝑑
. Then, we consider the core decomposition with collaps-

ing 𝑥 . We first delete 𝑉𝑑
including 𝑥 , and the remaining graph is

still induced by 𝑉 𝑟
satisfying 𝑑𝑒𝑔(𝑣) ≥ 𝑆.𝑐 for each 𝑣 ∈ 𝑉 𝑟

. Since

𝑢 ∈ 𝑆.𝑉 ⊆ 𝑉 𝑟
, 𝑢 is not a collapsed follower of 𝑥 , which contradicts

with our assumption.

For situation 3), we first consider the core decomposition with-

out collapsing 𝑥 . For each 𝑣 ∈ 𝑆.𝑉 , we denote 𝑁> (𝑣) = {𝑤 |
𝑤 ∈ 𝑁 (𝑣,𝐺) ∧ 𝑐 (𝑤) > 𝑆.𝑐}; we have |𝑁 (𝑣, 𝑆) ∪ 𝑁> (𝑣) | ≥ 𝑆.𝑐 as

𝑐 (𝑣) = 𝑆.𝑐 . Then, we consider the core decomposition with col-

lapsing 𝑥 , which firstly deletes each 𝑣 ∈ 𝑉 (𝐺) with 𝑐−𝑥 (𝑣) < 𝑆.𝑐 .

For each 𝑤 ∈ 𝑁> (𝑣) subject to each 𝑣 ∈ 𝑆.𝑉 , we have 𝑤 ≠ 𝑥 by

situation 3) and 𝑐−𝑥 (𝑤) ≥ 𝑆.𝑐 by Lemma 5.5. For each 𝑣 ∈ 𝑆.𝑉 , the
vertices of 𝑁> (𝑣) exist in current remaining graph, so we still have

|𝑁 (𝑣, 𝑆) ∪ 𝑁> (𝑣) | ≥ 𝑆.𝑐 . Thus, 𝑣 is not a collapsed follower of 𝑥 .

As 𝑢 ∈ 𝑆.𝑉 , this contradicts with our assumption. □

Proof of Theorem 5.14.We first prove that Lines 1-12 correctly

update the shell components. Assume 𝑐 (𝑣𝑠 ) ≤ 𝑐 (𝑣𝑡 ) where the

coreness is from the graph before inserting or removing (𝑣𝑠 , 𝑣𝑡 ).
For the insertion or removal of (𝑣𝑠 , 𝑣𝑡 ), only the vertices with core-

nesses equal to 𝑐 (𝑣𝑠 ) and are reachable from 𝑣𝑠 via a path consists of

vertices with corenesses equal to 𝑐 (𝑣𝑠 ) may have their corenesses

changed by at most 1 [45, 58], i.e., only the vertices in 𝑉 ∗ may

change their corenesses. After the insertion or removal, the new

shell components in
ˆS are correctly computed by Algorithm 3 at

Lines 7-12. For any shell component 𝑆 ′′ ∉ ˆS, i.e., 𝑆 ′′ is not con-
nected with any new shell component 𝑆 ′ ∈ ˆS among the edges

in the updated SC∗, we have the coreness of each vertex in 𝑆 ′′

keeps unchanged. It is because, in previous and current core de-

compositions, the degree of each vertex in 𝑆 ′′ keeps the same in the

remaining graph when 𝑆 ′′ is the next shell component to be deleted.

Otherwise, 𝑆 ′′ will be updated by Lines 7-12. Thus, each above 𝑆 ′′

keeps the same and the shell components are correctly updated. By

Theorems 5.8 and 5.9, the follower sets regarding the expired shell

components should be removed (Lines 15-19) and the follower sets

regarding the new shell components are correctly computed (Line

20). □

8.2 Additional Experiments
Different Metrics v.s. Ground-truth Node Engagement. Simi-

lar to the engagement study in Section 3, we further validate the

correlation between different metrics and node engagement in

Brightkite data from [25]. Note that there are only a few datasets

available for the validation, because we need the ground-truth

engagement of each user and the engagement dynamic between

different time periods to check the ground-truth node importance.

The setting on Brightkite is the same as in the study on Yelp,
except that the ground-truth engagement of a user here is the num-

ber of his/her check-ins in Brightkite. As shown in Figures 9,

the performance is similar to Yelp: the engagement values may

differ a lot for the vertices with close degrees (resp. betweenness

or closeness values), while coreness is clearly in a positive correla-

tion with node engagement. Note that coreness also outperforms

other variants of centrality metrics, because core decomposition

well models the leaving sequence of users in the degeneration of

a network. Thus, the users with large corenesses are less likely to

leave the network, compared with the users with small corenesses.

Therefore, it is promising to study the engagement dynamics with

the coreness-based models, i.e., the anchor/collapse power.
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Figure 9: Different Vertex Ranking Metrics v.s. Ground-truth Node Engagement (#Check-ins in Brightkite)
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Figure 10: Effectiveness of Different Metrics by Relative Importance of the Selected Users (Dynamic of #Check-ins in Brightkite)

Different Metrics v.s. Ground-truth Node Importance. Similar

to the importance study in Section 3. The setting is the same as in

the study on Yelp, except that 1) the ground-truth node importance

here is represented by the effect on user check-ins, 2) the first group

here contains 500 users with the highest scores, and 3) the second

group contains the rest users (5737 on average). Compared to the

case study of Yelp (Figure 3), the gaps between #Followers and

other metrics are larger, because of the different settings on user

groups and the large number of check-ins in Brightkite compared

with the number of reviews in Yelp.
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