
VBASE: Unifying Online Vector Similarity Search and Relational Queries via
Relaxed Monotonicity

Qianxi Zhang1 Shuotao Xu1 Qi Chen1, ∗ Guoxin Sui1 Jiadong Xie1, 2 Zhizhen Cai1, 3

Yaoqi Chen1, 3 Yinxuan He1, 4 Yuqing Yang1 Fan Yang1 Mao Yang1 Lidong Zhou1
1Microsoft Research Asia 2East China Normal University

3University of Science and Technology of China 4Renmin University of China

Abstract
Approximate similarity queries on high-dimensional vec-

tor indices have become the cornerstone for many critical
online services. An increasing need for more sophisticated
vector queries requires integrating vector search systems with
relational databases. However, high-dimensional vector in-
dices do not exhibit monotonicity, a critical property of con-
ventional indices. The lack of monotonicity forces existing
vector systems to rely on monotonicity-preserving tentative
indices, set up temporarily for a target vector’s TopK near-
est neighbors, to facilitate queries. This leads to suboptimal
performance due to the difficulty to predict the optimal K.

This paper presents VBASE, a system that efficiently sup-
ports complex queries of both approximate similarity search
and relational operators. VBASE identifies a common prop-
erty, relaxed monotonicity, to unify two seemingly incom-
patible systems. This common property allows VBASE to
circumvent the constraints of a TopK-only interface to achieve
significantly higher efficiency, while provably preserving the
semantics of TopK-based solutions. Evaluation results show
VBASE offers up to three orders-of-magnitude higher per-
formance than state-of-the-art vector systems on complex
online vector queries. VBASE further enables analytical simi-
larity queries that previous vector systems do not, and shows
7,000× speedup with 99.9% accuracy of exact queries.

1 Introduction

Recent advances in deep learning (embedding) models
map almost all types of data (e.g., images, videos, docu-
ments) into high-dimension vectors [60, 66, 88]. Queries on
high-dimensional vectors enable complex semantic-analysis
that was previously difficult if not impossible, thus they be-
come the cornerstone for many important online services
like search [25, 51], eCommerce [54], and recommenda-
tion systems [49, 53, 56, 84]. The “online” nature of these

∗Corresponding author.

services requires vector search to complete in millisec-
onds [31, 36, 42, 64]. Such a strict latency conflicts with the
inherently high cost of exact search algorithm [28], which
forces end-users to settle on approximate query results on
high-dimensional vectors. With emerging new vector search
applications, queries on vectors become increasingly more
complex, which often involve hybrid search on both scalar
and vector data (§2.1). This naturally motivates an integration
of vector search systems and relational databases.

Vector search and database systems differ in their ways of
using the index, a critical structure to speed up queries. An
important property of conventional indices like B-tree [22] is
monotonicity. This property ensures that a query can traverse
the data-set guided by an index monotonically along a certain
direction. This often avoids total data scan, therefore enables
efficient query execution. However, it is prohibitively expen-
sive for high-dimensional vector indices [5, 25, 43, 55, 57, 85]
to preserve monotonicity, because of the curse of dimension-
ality [28]. Instead, they are often organized as a graph or
cluster-based irregular structure, which follows monotonic-
ity approximately. Traversing such vector indices does not
guarantee a strict monotonic order in terms of distances to a
target vector, but it enables a system to efficiently determine
when it is unlikely for new traversals to reach closer vectors
to a target than the current K ones. Therefore, modern vector
indices only support approximate TopK, i.e., to find K nearest
neighbors approximately. A TopK query traverses a vector
index for a sufficiently large number of steps, until it deter-
mines that a neighbor closer than the current K nearest ones
is unlikely to be found.

To integrate vector search and database systems , existing
vector database systems [76, 80, 86] choose to conform with
strict monotonicity. To support similarity queries other than
TopK, they first leverage TopK to collect K vectors, and sort
the K vectors according to distances to a target vector, which
sets up a temporary index preserving monotonicity. Complex
relational operators can therefore execute on the temporary
index in the traditional way. Consider the following vector
search query, “find X number of products most similar to an

image but under a certain price”. A database planner would
first run a vector search operator on the vector attribute of
image embedding to find K nearest tuples, then apply a filter
operator on the price attribute. But it is impossible to predict
exactly how many tuples will pass the filter operator, which
could be much less than K. Therefore this practice has the
inherent difficulty of identifying the optimal K that produces
exact X results. As a result, it resorts to either a setting of a
conservatively large K or a trial-and-error of many Ks, which
both lead to suboptimal query performance.

In this paper, we present VBASE, a new system capable
of efficiently serving complex online queries that involve
both approximate similarity search and relational operators on
scalar and vector data-sets. VBASE identifies Relaxed Mono-
tonicity as the common property abstracted from the two
seemingly different systems: vector search systems and rela-
tional databases. Relaxed monotonicity requires index traver-
sals to only follows monotonicity approximately. We observe
that state-of-the-art vector indices all follow relaxed mono-
tonicity property in a two-phase pattern: an index traversal
first locates the nearest region to a target vector approximately,
and then moves away from the target region progressively in
an approximate way. Based on the observation, we formally
define Relaxed Monotonicity property, which abstracts the
core index traversal pattern that most existing vector indices
already have (§3.1). Relaxed monotonicity can be viewed as a
generalized form of monotonicity, thus it is also applicable
to conventional scalar indices, such as B-trees. Therefore, Re-
laxed Monotonicity can serve as the common foundation of
vector search and database systems.

With relaxed monotonicity, VBASE builds a unified query
execution engine to support a wide range of queries both
on scalar and vector data, including queries across multiple
heterogeneous indices. VBASE’s unified engine is based on a
Next interface, instead of TopK, to support traversal in both
vector and scalar indices. Meanwhile, the engine allows the
derivation of a generalized termination condition from relaxed
monotonicity to stop a query’s execution timely.

A unique characteristic of VBASE is that its relaxed-
monotonicity-based query execution engine can provably
achieve equivalent query results to those produced by TopK-
only solutions of the optimal K̃ (§3.3) This powerful prop-
erty allows VBASE to circumvent the constraints of a TopK-
only interface to achieve significantly higher efficiency, while
preserving the semantics of TopK-based queries. In particu-
lar, based on the derived generalized termination condition,
VBASE is able to detect the K̃ during index traversal without
an prediction of K̃. This allows VBASE to achieve similar per-
formance to the well-optimized TopK vector search. For more
complex queries than TopK searches, VBASE can achieve
up to three order-of-magnitude lower average and tail query
latency over state-of-the-art systems under similar result ac-
curacy (i.e., same or even better recalls).

Moreover, with relaxed monotonicity, VBASE can even

Table 1: Online Similarity Query Support for Vectors

S1 S2 S3 S4

ANN systems [25, 43, 46] ! 7 7 7

AnalyticDB-V [80] ! ! 7∗ 7∗

PASE [86] ! ! 7∗ 7∗

PostgreSQL [12] 7∗ 7∗ 7∗ 7∗

Milvus [76] ! ! ! 7

Elasticsearch [4] ! ! 7� 7

∗: Some systems can support these queries through exhaustive linear
scan, but this cannot meet the requirements of online services.
�: Only support one inverted index and one vector index.

support approximate query types that previous systems do
not, and show superior query performance and accuracy. For
example, VBASE can finish a join-based vector query in 16
seconds with 99.9%+ recall rate, which is 7000× faster than
a brute-force table scan.
In summary, we make the following contributions:
1. VBASE identifies and defines formally “Relaxed Mono-

tonicity”, a property that reveals, for the first time, the core
of well-designed vector indices and why they work effec-
tively in practice.

2. VBASE builds a Unified Database Engine based on
relaxed monotonicity, which enables powerful complex
queries leveraging both vector and scalar data indices.

3. We prove that VBASE’s unified engine produces equiv-
alent results to TopK-only methods using vector indices,
with a much more efficient execution plan than that of
TopK-only methods.

4. We implement VBASE based on PostgreSQL with 2000
lines of additional code, and show an end-to-end evaluation
of eight complex SQL queries on a hybrid one million
recipe data-sets [59] with both vector and scalar attributes.

We plan to make VBASE open-source to satisfy the emerg-
ing important vector analytic applications in the era of AI.

2 Background

2.1 Emerging Online Vector Queries
Vector has become a key form of data representation in the AI
era. Deep learning has enabled a growing number of vector-
centric online applications, including embedding-based re-
trieval [25,87], face recognition [69], code retrieval [37], ques-
tion answering [52, 63], Google Multisearch [7], Facebook
near-exact duplicates detection [6], etc. More recently, AI ap-
plications have leveraged ChatGPT’s retrieval plugin [10] to
convert their proprietary knowledge, personal documents, and
chat contexts into vectors. This enables the retrieval of rele-
vant vectors with price, category, location, or time constraints
to construct prompts in the chat.

Traditional applications also benefit from vectors empow-
ered by AI. For example, search engine turns web documents
into both bag-of-words sparse vectors and deep learning em-

bedding dense vectors to improve the relevance of search
results. And recommendation systems turn images, videos,
and descriptions of items into different vectors. Combined
with scalar data like item price and category, these vectors are
used to enhance recommendation experiences.

All these call for a general system to run sophisticated
vector and scalar queries efficiently. In summary, these vector
scenarios can be categorized into the following types.
S1: Single-vector TopK. embedding-based retrieval [25], rec-
ommendation [87], and question answering [52, 63] essen-
tially search a vector data-set for the K closest vectors, given
a query vector. Such queries can be naturally expressed by a
TopK operator on a single-vector column.
S2: Single-vector TopK plus scalar attribute filtering. There
are also requirements to find TopK results under certain scalar
attribute constraints. Google Multisearch [7] belongs to this
category. It allows users to provide additional text hints during
a similarity image search.
S3: Multi-column TopK. Some vector analytics require in-
tersecting results of multiple TopK searches over different
vector attributes. For example, image-recipe retrieval [68] is
a recipe search on multi-modal data attributes of both (vector-
ized) ingredient keywords and a sample dish image. Recent
work [70,83] shows that multi-column TopK search can boost
result quality in applications such as question-answering.
S4: Vector similarity filter. Similarity filtering is a typical
vector analytics scenario. For example, face recognition [69]
and Facebook’s near-exact duplicates detection [6] search
for similar images (given an image) from a data-set with a
similarity threshold. To support such applications, one could
use vector filtering based on distance similarity between two
images, i.e., distance-based range query.

All these vector query types have a strict latency require-
ment (e.g. milliseconds). Unfortunately, no existing systems
can support all these online similarity queries comprehen-
sively and efficiently (see Table 1).

2.2 The Division Between Databases and Vec-
tor Search Systems

Although databases can express the above queries through
relational algebra, the division in the semantics between vec-
tor and conventional database indices makes it difficult to
provide a unified system that efficiently runs various types of
sophisticated online vector queries as shown in Table 1.
Relational database. A relational database is one of the most
prominent tools to run sophisticated queries [16,24,29,40]. In
order to meet the low-latency “online” requirement, indices
are widely adopted by databases to expedite query executions,
such as B-tree [22], B+-tree [75] and more. These indices
demonstrate monotonicity, a property that allows a query to
traverse an index monotonically along a certain direction, e.g.,
in a descending or ascending order.

One of the most important types of online queries in the
context of emerging vector scenarios is TopK query (§2.1).
And a conventional database index can speed up TopK by
traversing the index in the ascending or descending order and
terminating the query as soon as it collects K results. This
optimization applies to many TopK variants, such as TopK +
filtering, and multiple-column TopK queries [33].

However, the effectiveness of such optimization relies on
the assumption of monotonicity, which high-dimensional vec-
tor indices do not follow. We elaborate next.
Approximate vector search. The recent eruption of AI mod-
els has been generating a large and growing amount of
high-dimensional vector data. For better learning represen-
tation, a vector can have hundreds of dimensions [60, 66, 88].
Due to the curse of dimensionality [28], no solutions can
complete a high-dimensional vector query in sub-linear time.
To address “online” scenarios, modern vector search sys-
tems resort to approximation to lower query latency dra-
matically (milliseconds) while maintaining a relatively high
result accuracy (90%+ recall). These systems are often re-
ferred as approximate nearest neighbor search (ANNS) sys-
tems [5, 25, 43, 55, 57, 85].

Like relational databases, vector indices are adopted to
facilitate approximate vector search. Representative vector
indices are either organized as partitions (clustering-based [5,
17, 19, 25, 44, 45, 48, 90], hash-based [30, 41, 79, 81, 85]),
high-dimensional tree-based [23, 57, 62, 78]), or neighbor-
hood graphs [32, 39, 43, 55, 58, 77]. The difficulty of locating
a vector in the high-dimensional space forces these vector
indices to optimize for approximate TopK. In a TopK query,
index traversal is guided by a query vector q approximately to-
wards the nearest neighbors tortuously based on the distance
between q and some anchor points (e.g. cluster centroids, or
sampled graph vertices). During the traversal, the direction to
q may change dramatically, thus the process does not guaran-
tee to approach q in every traversal step and the vector index
traversal is not monotonic.

The lack of monotonicity in vector indices bars database
systems from directly using vector indices to expedite queries,
which is the primary source of the division between databases
and vector search systems.
TopK-based solutions to eliminate the division. Because
vector indices are optimized for TopK, ANNS systems expose
only a TopK interface. To close the monotonicity gap between
databases and vector search systems, the current practice is to
use ANNS TopK interface to create tentative indices based on
K vectors sorted according to the distance to the target vector.
Such tentative indices preserve monotonicity, which enables
fast vector query processing in databases [76, 80, 86].

However, TopK-based tentative index solutions are unsatis-
factory. It is difficult, if not impossible, to predictthe right size
of K̃ for the tentative index for queries, where a subsequent
relational operator with a filter constraint can collect just the
right number of results. This limitation universally applies

to TopK + filter queries, vector similarity filter queries, and
more. Thus TopK-based tentative indices inevitably lead to
choosing a conservatively very large K [80,86] or performing
trial-and-error with different sizes of K [76], both incurring
excessive data accesses and computations.

3 VBASE Design

3.1 Relaxed Monotonicity
Unlike conventional scalar indices, high-dimensional vector
indices are designed for approximate TopK and do not fol-
low monotonicity. Figure 1 shows the TopK traversal pat-
terns of two popular vector indices, FAISS IVVFlat [5] and
HNSW [89] . As illustrated, vector index traversal does not
comply with monotonicity, the distance towards the target
vector oscillates unpredictably as the traversal progresses. A
lack of monotonicity in these vector indices bars relational
databases from directly using them to expedite queries (§2.2).

(a) FAISS IVFFlat (b) HNSW
Figure 1: Traversal patterns of two vector indices.

The Two-phase Vector Index Traversal Pattern. Neverthe-
less, Figure 1 reveals a two-phase index traversal pattern for
both vector indices. In the first phase, the index traversal ap-
proaches the target vector region approximately in spite of
large oscillations in vector distances. In the second phase, the
index traversal stabilizes and steadily departs from the target
vector region in an approximate way.

This two-phase traversal pattern is common in most vector
indices we examine. We believe that the essence of well-
designed vector indices is an effective data-structure that em-
bodies this traversal pattern implicitly. Thus a TopK search
query could terminate early when it enters the second phase as
further traversals are unlikely to identify more similar vectors.
The Formal Definition of Relaxed Monotonicity. Based on
the two-phase traversal pattern, we can formally define Re-
laxed Monotonicity which identifies if a vector index traversal
has entered the second phase. The definition is built upon the
intuition of how a vector TopK search is executed internally.

Figure 2 shows such an intuition by illustrating the process
of a general vector search for a query vector q. The dashed ar-
row in the figure shows an index traversal path with respect to
q. Following the two-phase pattern, the query first approaches
the neighborhood of q gradually. In a high-dimensional space,
the neighborhood of q is defined by a neighbor sphere cen-
tered around q, illustrated as a circle in Figure 2. Afterward,

𝑞

𝑅!

Neighbor sphere of a target vector 𝑞 with a radius 𝑅! ,
which contains 𝐸 nearest vectors to 𝑞.

Traversal window with 𝑤 previous vectors

𝑀!
":Median distance of vectors to 𝑞

in traversal window

Travers
al path

Figure 2: An Illustration of Relaxed Monotonicity’s intuition.
A vector query q discovers q’s neighborhood with E nearest
vectors along the progression of a traversal path.

the index traversal leaves the sphere and enters phase two,
where the query can terminate in this phase.

Figure 2 suggests that, to determine whether it enters phase
two, a query needs to understand Rq, the radius of the neigh-
bor sphere centered around q, and whether Ms

q, the distance
between the query’s current index traversal position (denoted
as traversal step s) and q, is greater than Rq, i.e., it is traversing
beyond the neighborhood of q.

Formally, Rq, the radius of q’s neighborhood, is defined as:

Rq = Max(TopE({Distance(q,v j)| j ∈ [1,s−1]})), (1)

where TopE denotes the E nearest neighbors of q observed
during the traversal, supposing that the traversal has reached
step s so far. For a K nearest vector search query, it requires
E ≥ K in order to produce sufficient final results. In Figure 2,
the E vectors within the circle are the nearest neighbors of q
of all the s vectors visited so far. During an index traversal,
the sphere’s radius Rq would gradually decrease during phase
1, and becomes stable during phase 2.

Given the definition of Rq, the system needs to define Ms
q,

the distance measurement between the target vector q and
the current index traversal position, denoted as traversal step
s. Ms

q is then used to determine whether the traversal enters
phase 2, i.e., leaving the neighbor sphere.

Mathematically, Ms
q is defined as the median distance to

q of all vectors traversed in the most recent w steps, i.e., the
traversal window.

Ms
q = Median({Distance(q,vi)|i ∈ [s−w+1,s]}), (2)

where Distance(q,vi) denotes the distance between q and
vector vi, traversed in the past traversal window. Note that we
use median instead of mean to disregard any outlier vectors
in the traversal window, which has exceedingly large or small
distances to q than others. For example, the two outlier vectors
in the leftmost and rightmost positions in the traversal window
shown in Figure 2.

Taking Eq.1 and Eq.2 together, we define Relaxed Mono-
tonicity as:

Definition 1 Relaxed Monotonicity

∃s,Mt
q ≥ Rq,∀t ≥ s. (3)

In other words, Def. 1 determines that a vector index fol-
lows relaxed monotonicity if there exists a certain index traver-
sal step s, where all traversal steps t after step s transcends
into a region (Mt

s as the region’s distance to q) that is outside
q’s neighborhood sphere, defined by q’s E nearest neighbors.
Importance of Relaxed Monotonicity. Relaxed monotonicity
is the key for the database to circumvent the inefficient con-
straint of TopK-only interfaces, and to generate an efficient
execution with on-the-fly early termination. When subsequent
database operators following the vector index scan can deter-
mine that vector index traversal has entered the second phase,
one would know that we are veering away from the target
vector steadily. In such cases, we could early terminate the
query if sufficient results have been collected, because new
tuples with closer vector attributes are unlikely to be found.
Generality of Relaxed Monotonicity. All mainstream vector
indices listed in ANN Benchmarks [2] perform vector search
using four general components: 1) index traversal to navigate
the vector data-set; 2) termination check to detect query termi-
nation signal; 3) monotonicity check to determine if a query
enters Phase 2; and 4) priority queue for keeping K nearest
vectors so far. Often in ANNS indices, monotonicity check is
a necessary condition for the termination check.

Although vector indices implement these four components
in different ways, their monotonicity check satisfies Def. 1.
For example, Figure 1 shows that index traversal patterns of
IVFFlat and HNSW follow relaxed monotonicity obviously.
And Def. 1’s parameters, i.e., the traversal window w and the
neighborhood of q Rq, are able to capture the internal char-
acteristics of index traversal patterns of these popular vector
indices as well as conventional indices. Next, we elaborate on
the setting of these parameters for representative indices.
• Graph-based Vector Indices, such as HNSW [89], fol-

low the two-phase pattern using graph data-structures. In
the first phase in Figure 1b, HNSW quickly navigates the
traversal to the neighborhood of q through hierarchical
coarse-grained to fine-grained navigating graphs. When
it reaches the fine-grained graph, the traversal enters the
second phase where it has found the neighborhood of q and
departs away. Vector search using a graph-based index use
best-first (BF) graph traversal from a fixed starting point.
BF search maintains a sorted candidate queue with the size
e f . This queue essentially represents the neighborhood
sphere in Eq. 1 with e f vectors. Therefore E equals e f
for HNSW. BF traversal explores the graph through the
vectors in the candidate queue and expands the exploration
by visiting their neighbors. If a neighbor is unvisited and
its distance to the target vector q is smaller than the farthest
vector in the sorted queue (i.e. Rq), the traversal replaces
the farthest vector with the new one and resorts the queue.
Because the traversal only compares the traversed vector
itself with Rq, the traversal window w in Eq. 2 equals one.

• Partition-based Vector Indices, such as FAISS IVF-
Flat [5] and SPANN [25], divide vectors into multiple clus-

ters where nearby vectors are conglomerated. During the
traversal in the first phase in Figure 1a, IVFFlat traverses
over the centroids to identify the m closest clusters, and then
in the second phase it goes over the vectors in m clusters
and terminates when all vectors in m clusters are traversed,
which indicates Eq. 3 of Relaxed Monotonicity has been
satisfied after the vector search visits m clusters. With this
observation, E in Eq. 1 is set to K of the TopK query, and
the traversal window w in Eq. 2 is set to the number of total
vectors in m clusters.
• Scalar Indices, such as B-Tree, follow strict monotonicity.

It is a special case of relaxed monotonicity, where w and E
are both set to 1 and Eq.3 is always true.
Note that it is our observation that well-designed indices

should satisfy Relaxed Monotonicity. VBASE abstracts and
formalizes this property that most indices already preserve,
and encapsulates it with mathematical terms such as E and w
in Eq. 1 and 2. It is the responsibility of individual indices to
guarantee relaxed monotonicity by tuning the corresponding
hyperparameters like e f and m, which can be transformed to
E and w, as discussed above.

3.2 Unified Query Execution Engine
With relaxed monotonicity, VBASE builds a unified query
execution engine modeled after a traditional database engine
with minimum changes. VBASE’s unified engine is built on
Volcano Model (i.e. Iterator Model) [35], where 1) a relational
operator in a given query produces a stream of tuples itera-
tively that are consumed by downstream operators, and 2) the
iterative execution stops if a termination condition is met.
Iterative Execution Model. VBASE fully complies with the
Volcano Model. It reuses the traditional Open, Next, and
Close interfaces to leverage index traversal so that no change
is required for conventional indices. For vector indices that
traditionally expose TopK interfaces only, VBASE performs a
simple adaptation to expose their internal index traversal pro-
cess, to conform to VBASE’s Next interface. We will discuss
the details of implementing Next for vector indices in §4.2.
Generalized Termination Condition Check. VBASE modi-
fies the termination condition based on relaxed monotonicity.
In particular, VBASE extends the original termination condi-
tion with relaxed monotonicity check. In addition to the orig-
inal query termination condition, VBASE performs relaxed
monotonicity check by inspecting Eq. 3. Because VBASE
requires a vector index guarantees Relaxed Monotonicity, an
inspection of Eq. 3 could be reduced to Ms

q > Rq, where re-
laxed monotonicity checks beyond step s are all assumed to
be true.

The query execution would only stop if both the original
termination condition and relaxed monotonicity check were
passed. Please note for the traditional index, the relaxed mono-
tonicity check is always true, which reduces to the termination
check of the convention iterative model.

Next, we describe how VBASE’s termination conditions
work for TopK and distance-based ranger filter, two operators
used by vector queries.
• OrderBywith limit: In traditional databases, TopK is usu-

ally expressed by an OrderBy operator with limit K. The
traditional TopK query terminates immediately once K re-
sults have been collected, because all indexed tuples are or-
dered. For an approximate TopK query on vectors, VBASE
need to check if the relaxed monotonicity check (i.e., re-
duced Eq.3) is passed, in addition to collecting K vectors.
When relaxed monotonicity check is true, the index traver-
sal has entered phase 2 (§3.1), which indicates it is veering
away from the target vector steadily. And we can terminate
the query after collecting K nearest vectors, because it is
unlikely to find new vectors closer than the collected ones.

• Range filter: Distance-based range filter returns tuples
whose values or distances to a target are within a range R.
For a conventional query, the query stops when a tuple be-
ing traversed goes beyond range R, because monotonicity
guarantees we have visited all tuples within R. For a vector
query, the execution only stops if both a vector along the
traversal path exceeds distance R and the relaxed mono-
tonicity check is passed, which indicates we are in a stable
phase (phase two) moving away from a target vector.

Advantages of a Unified Engine. The unified engine en-
ables VBASE to preserve full compatibility with traditional
databases and supports all the vector query types discussed
in §2.1. It also creates new optimization opportunities for
vector queries. For example, instead of filtering after TopK,
VBASE can perform filtering during index traversal with flex-
ible termination conditions (for TopK or range query). This
optimization is one of the key reasons VBASE outperforms
TopK-based solutions (§5.3). Moreover, the unified engine
allows the incorporation of a refined NRA algorithm [33],
which can significantly improve the performance of multi-
column vector query (§4.4).

Interestingly, VBASE’s unified engine also supports vector
Join. Although not an online query, vector Join is useful in
scenarios such as document auto-tagging [26, 72], where a
small labeled (tagged) document set is used to identify a tag
for each document in a large unlabeled document set by find-
ing the document pair with the closest document embeddings
(vectors). This can be thought of as running a Join operator
on a document table and a label table with a distance-based
match, which can be achieved in VBASE by an index join
based on a range filter. Because such a Join can only be
achieved by a full table scan in existing solutions, VBASE
can outperform the baseline by over 7000× (§5.3).

3.3 Result Equivalence
In this section we demonstrate a powerful property of
VBASE’s unified query execution engine based on Relaxed
Monotonicity, that it produces the equivalent results as a TopK

method based on a tentative monotonicity-preserving index
with the optimal K̃. The optimal K̃ is the minimal K′ for the
index traversal to satisfy K results in a TopK query. As K′ is
the minimal satisfactory value, the query latency is minimized.
We rely on the quality of individual indices to ensure recalls.

Next, we formally prove the result equivalence for
TopK+filter and range filer [20] queries, which are major types
of similarity searches supported by existing TopK-based vec-
tor systems (Table 1). The proof also reveals the reason of
VBASE’s superior performance.

Index Traversal

Relaxed
Monotonicity

Check
Priority
Queue

Termination
Check

Filter

Limit

TopK Interface

Output
(K)

Vector Index

Index
Scan

Index Traversal

Vector Index

Index
 Scan

Relaxed
Monotonicity

Check

Filter

 OrderBy
with Limit

Termination
Check

Output
(K)

Priority
Queue

TopK-based Systems VBase

Limit_K(Filter(Limit_K′(Sort(R1))))

Filter(Limit_K′(Sort(R1)))

Limit_K′(Sort(R1))

Limit_K′(Sort(R1))

R1

Iterative Traversal

Limit_K(Sort(Filter(R2)))

Filter(R2)

R2

R2

Figure 3: Result Equivalence

TopK +filter. To find K vectors matching the filter, a TopK-
based system first collects K′ vectors by calling TopK (K′)
and sorts the collected K′ vectors. To achieve this, the system
needs to traverse R1 vectors through the underlying vector in-
dex. The query then runs on the sorted K′ vectors by applying
the filter and the K limit operators, producing the final results,
denoted as r1. Eq.4 formulates the above process, illustrated
on the left in Figure 3.

r1 = Limit_K(Filter(Limit_K′(Sort(R1)))). (4)

We define f ilter_selectivity as the ratio of the output set
on the input set of the filter operator. Eq. 4 can then be trans-
formed to:

r1 =Limit_K′′(Filter(Sort(R1))),

where K′′ = min(K,K′× f ilter_selectivity).
(5)

Assuming the TopK-based system can predict the optimal K̃,
i.e., K′= K̃ =K/ f ilter_selectivity, execution will get exactly
K results, and Eq. 5 reduces to Eq. 6

r1 = Limit_K(Filter(Sort(R1))). (6)

In comparison, VBASE traverses R2 vectors via the same
vector index as the TopK-based system, and gets results r2.
Eq. 7 formulates this process, shown on the right of Figure 3.

r2 = Limit_K(Sort(Filter(R2))). (7)

We show in §3.2 and §4 that TopK-based systems and
VBASE use the same vector index, follow the same index
traversal algorithm, and are based on the same relaxed mono-
tonicity check to terminate queries. Therefore both systems
traverse the exact same set of tuples, i.e., R1 = R2. 1. Because
R1 = R2 and Filter and Sort are commutative, from Eq. 6 and
7 we conclude r1 = r2. Q.E.D.

It is difficult for a TopK-based solution to predict K′ to
get both correct results and high query efficiency. If K′×
f ilter_selectivity < K in Eq.5, the system cannot get enough
results, leading to poor accuracy. If K′× f ilter_selectivity >
K in Eq. 5, the result is accurate at the expense of splurg-
ing extra index traversal. Some TopK-based system [76]
performs trial-and-error with many values of K′ until K′×
f ilter_selectivity≥ K, which results in excessive duplicated
data access and processing. In contrast, VBASE determines
K̃ × f ilter_selectivity = K on-the-fly, therefore achieving
both high query accuracy and performance.
Range Filter Query. A range filter query based on TopK can
be formulated as

r1 = Filter(Limit_K′(Sort(R1))), (8)

Where R1 stands for the traversed vectors by the underly-
ing TopK primitive. Similar to Eq.4 vs. Eq.5, Eq. 8 can be
transformed to

r1 =Limit_K′′(Filter((Sort(R1)))),

where K′′ = K′× f ilter_selectivity.
(9)

Under the assumption of optimal K̃, assuming the query
produces T vectors, we have K̃ = K′ = T/ f ilter_selectivity.
Based on K̃, Therefore,

r1 = Limit_T (Filter(Sort(R1))) = Filter(Sort(R1)). (10)

In comparison, VBASE traverses R2 vectors via the same
index and gets results r2, which can be formulated as

r2 = Filter(R2). (11)

Since the traversal algorithm and the termination condition
are exactly the same as the TopK-based solution, both sys-
tems visit the same set of vectors, i.e., R1 = R2. As the filter
conditions are not sensitive to order, r1 = r2. Q.E.D.

4 VBASE Implementation

4.1 Relaxed Monotonicity Check
We implement a common relaxed monotonicity check for all
vector indices based on Definition 1 in §3.1. Specifically, we
implement two queues to track the current traversal state: 1)

1We assume vector index traversal is deterministic, true for most vector
search systems.

a priority queue with size E called smallestQueue, to keep
the visited nearest neighbors of a target vector q during the
traversal; 2) recentQueue of size w to track the most recent
traversal window. When a new vector v is visited via index
traversal, smallestQueue and recentQueue are updated ac-
cordingly. And the relaxed monotonicity check is performed
by calculating the current traversal state according to Eq.(3)
based on vectors in smallestQueue and recentQueue.

Note that E and w are sensitive to data distribution and spe-
cific indexing algorithms. Increasing them tends to improve
query accuracy at the expense of longer latency. In practice,
they can be tuned to trade off query accuracy and latency.

4.2 Query Execution Engine
VBASE’s unified query engine is implemented based on Post-
greSQL, with minor extensions to modules regarding index
traversal and termination conditions.
Vector index integration. Existing high-dimensional vector
indices only expose TopK interface and keep the index traver-
sal and relaxed monotonicity check internally to the system.
VBASE re-architects the vector indices systems by exposing
the internal index traversal algorithms with Open, Next, and
Close interfaces, which can then be integrated into Volcano
Model seamlessly.

VBASE has incorporated several state-of-the-art vector in-
dices, including HNSW [89], IVFFlat [5] and SPANN [25],
where SPANN is shown effective for billion-scale vector data-
sets. Next, we introduce the integration of HNSW and IVF-
Flat, a graph-based index and a partition-based index, respec-
tively. Other algorithms can be integrated in a similar way.

HNSW [89] is a graph-based vector index consisting of hi-
erarchical neighborhood graphs where the upper-layer graph
keeps coarse-grained samples of the lower-layer graph. A
query traverses the graphs from upper-layer to lower-layer
following the best-first manner. The approximate nearest point
found in the upper-layer graph is the entry point of the lower-
layer graph. In VBASE, we remove the implementation re-
garding TopK, e.g., a priority queue to record the top k results,
and only keep states necessary to carry on the index traver-
sal algorithm. The relevant states include a bitmap to record
previously visited vectors, the current vector being visited,
and the candidate vectors to be visited next. These states will
be kept during the query life cycle. To initiate a query on
a vector index, VBASE calls Open to search on high-layer
graphs. During query execution, each call to Next will return
the current closest unvisited node, records it, and expands its
neighbors into candidate vectors in the state. The state will be
cleared in Close function. Overall, we modify less than 200
lines of code to integrate HNSW.

IVFFlat [5] is a partition-based index, which clusters vec-
tors into lists and chooses the centroid as the representative of
each list. In the Open interface used to initiate index traversal,
VBASE sorts all the lists from near to far based on the dis-

tance between the target vector and the centroids. Upon calls
to Next, the vectors in the corresponding nearest lists are read
one by one. The query execution state in a partition-based
index includes sorted lists and the current read position, which
will be destroyed by a Close.
Index scan operator. We add a new “vector index” type using
the index extension interface in PostgreSQL [12] to imple-
ment index scan. It forwards function calls to Next to the
underlying vector index within the iterative interface. We
use array to store high-dimensional vectors in the table and
record their tuple addresses in the table as the vectors’ meta-
data in the index. Once a vector is read from the underlying
vector index, its metadata will also be returned so that VBASE
can find the corresponding tuple in the main table.

Note that the relaxed monotonicity check described in §4.1
is implemented in the index scan operator so that multiple
indices do not need to duplicate the implementation.
OrderBy with limit. VBASE implement TopK using
OrderBy with limit plus an index scan operator. The system
uses a priority queue to keep the candidate results. The TopK
query terminates once the index traversal passes the relaxed
monotonicity check in the upstream index scan operator and
K vectors have been filled in the priority queue.

Note that vector indices are used for similarity queries, i.e.
search closest vectors to the target vector. If a user would
like to query the farthest TopK results from the target vector,
the distance calculation method needs to be reversed before
creating the indices.
Range filter and Join. VBASE implements an efficient
range filter by concatenating it with an index scan opera-
tor. Only vectors passing the distance filter condition can
be returned to the subsequent operators. The index traversal
stops when the distance between the current vector to the
target vector is larger than the filter constraint and the relaxed
monotonicity check is passed in the index scan operator.

With the support of distance filter, VBASE can even support
Join on high-dimensional vectors, which previous vector sys-
tems cannot support efficiently. Semantic-based join has been
widely used in document auto-tagging [26,72], which assigns
one or multiple labels for each unseen document by finding
the closest label embeddings to a document embedding. Previ-
ous systems can only support Join by brute-force table scan.
VBASE executes a Join by nested-loop with index search,
which outperforms existing systems by 7000× faster with
0.999 recall accuracy in our experiment.
More complex queries. The combination of the above opera-
tors can be used to support more complex queries efficiently.

4.3 Query Planning

Complex queries often require effective cost estimation on
various query plans. In general, it includes vector algebra
computation (e.g., distance calculation), selectivity estimation

in case the query contains filters, and index scan cost.
Vector computation. Traditional databases estimate the cost
of scalar data computation using a constant value t, e.g.,
t = 0.0025. But vector computation is more expensive, it in-
volves the calculation of the distance between vectors, which
is proportional to the number of dimensions. Thus VBASE
models the cost of vector computation tv as:

tv(dim) = t · c ·dim,

where t is a predefined value representing the cost of scalar
operation, c is the coefficient related to SIMD optimizations
for vector computation, and dim denotes vector dimension.
Selectivity estimation. If a query contains a filter, the query
should estimate selectivity, the ratio of tuples that will pass the
filter. VBASE relies on sampling-based methods to measure
the distribution of high-dimensional vectors [67, 82]. Specif-
ically, VBASE uniformly samples vector data at a ratio and
stores the sampled vectors in the metadata of the database.
Given a query q, it applies the filter on the sampled data to
estimate the selectivity Sel on the full vector data-set.

Selsample(q)≈ Sel f ull_data(q).

In our experiments, setting the sample rate to 0.001 can pro-
duce a good estimation with q-error < 1.1 in most cases while
incurring only a tiny extra latency (<1ms). More details will
be presented in §5.5.
Index scan cost estimation. This includes start-up cost and
traversal cost. The start-up cost is the cost to locate the region
nearby the target vector before returning vector data; Traversal
cost represents the cost to iterate over the matched tuples
through the index. For each index traversal step, the cost
Cstep includes tIO, the IO cost to fetch the index data from
disk, and tv(dim), the cost to calculate the distance: Cstep =
tv(dim)+ tIO. For partition-based indices like IVFFlat and
SPANN, the index scan cost Cp is:

Cp =Nc×Cstep +max(dSel(q)N/Npe,m)×Np×Cstep,

where N is the table size, Nc is the number of centroids, Np is
the average number of data per partition, and m is the number
of partitions the index traversal algorithm requires to traverse
for relaxed monotonicity check.

The scan cost, Cg, of graph-based indices like HNSW is:

Cg = Nstart ×Cstep +max(Sel(q)N,NE)×Riter×Cstep,

where Nstart is the number of steps to traverse upper-layer
graphs in Open function of HNSW, NE is the number of steps
to satisfy relaxed monotonicity check, and Riter is the average
times of distance function called per step to reach next point.
Nstart , NE and Riter are dependent on the hyper-parameters
of the index and the distribution of data, which can be au-
tomatically estimated by sampling, and this process can be
embedded into databases’ Analyze routine.

4.4 Multi-Column Scan Optimization
To support multi-column vector queries, TopK-based systems
can only perform multi-column scan based on the multiple
sets of sorted vectors collected by TopK. For example, Milvus
performs NRA algorithm [33] for multi-column scan based on
TopK. It doubles K and re-executes the query if the previous
results are insufficient. Every attempt to a larger K is an
independent traversal over the underlying vector index. This
introduces excessive vector access and computation.

In contrast, VBASE implements NRA algorithm [33] na-
tively based on the index scan operator, thus avoiding the
repetitive execution of NRA. The NRA algorithm traverses
each vector index in a round-robin manner. We observe that
round-robin might not be an efficient choice. In the vector
search scenario, different vector indices can return results of
different quality, especially when the ranking function is sum-
mation with unequal weights from different indices. Figure
4 shows the results of such a case, where the round-robin
method will unnecessarily traverse excessive low-quality vec-
tors (i.e., dots in Figure 4).

Figure 4: Index traversal pattern for a 2-index vector query
on Recipe1M. The total score is a summation of two vectors’
distance with a weight ratio of 1:2. Lower score means closer
to the target vector. Blue dots and red triangles represent the
total scores of entities using index1 and index2.

This observation leads us to a new index scan algorithm
that scans through high-quality indices more frequently, i.e.,
triangles in Figure 4, so that the query can terminate earlier
with even more accurate results. Such a non-uniform traversal
manner may trap in local optima. In Figure 4, a greedy algo-
rithm may prefer to visit index2 only. But the figure shows
that index1 does have good quality vectors occasionally.

To balance exploration and exploitation, we use both local
and global information to guide the index traversal (See Fig-
ure 5). Our approach divides the traversal process into several
rounds and adds a traversal decision module. It maintains
a local priority queue to store the last round’s results. This
local information helps us identify which index is more likely
to return better results so we can visit it more in the next
round. To avoid being trapped in local optima, the decision
module also stores the average score of all traversed entities
for each index (i.e., avgi for indexi) and updates them each
round. Based on this global information, We additionally tra-

Vector Index
(1)

Vector Index
(2)

Vector Index
(m)

……

Traversal Decision Module

next return

Average
Score

Generator

Local
Priority Queue

next return next return

Termination
Check

Global Priority Queue

Results with total score

YesNo Pop TopK from global
priority queue

Figure 5: Overview of multi-column traversal optimization,
assuming there are m indices.

verse each index Wi =

n2× 1/avgi
m
∑

j=1
1/avg j

 times in this round

where n2 is a hyper-parameter. Therefore, the high-quality
index (with low avgi) will be traversed more times while we
can still ensure traversing the low-quality index (with high
avgi) at least once in each round. Table 7 in §5.3 highlights
the benefit of this approach.

5 VBASE Evaluation

In this section, we evaluate VBASE in comparison with other
state-of-the-art vector search systems and vector-enabled
databases based on TopK, and demonstrate VBASE has supe-
rior performance and accuracy on vector similarity queries.

5.1 Evaluation Benchmark
A lack of a comprehensive relational benchmark for com-
plex vector applications necessitates us to create a vector
benchmark to compare VBASE with various vector-similarity-
enabled systems. The use of approximate vector processing
also needs the benchmark to define new evaluation metrics.
Vector-scalar relational data-set. Because current vector
search [2,3] and database benchmarks [13,14] have either vec-
tor or scalar data-sets but not both, we extend Recipe1M [68]
to generate vector and scalar hybrid data-sets. Recipe1M data-
set is a collection of more than 1 million recipes, each con-
taining ingredients, cooking instructions, and a set of images
of the finished dish.

Our evaluation data-set is organized as two tables: Recipe
Table and Tag Table. Their schemas are shown in Table 2 and
3, respectively.

Table 2: Schema of Recipe Table
Column Name Data Type Example
recipe_id identifier 1
images list of strings [“data/images/1/0.jpg” , · · ·]
description text [ingredients] + [instruction]
images_embedding vector [0.0421,0.0296, · · · ,0.0273]
description_embedding vector [0.0056,0.0487, · · · ,0.0034]
popularity integer 300

Table 3: Schema of Tag Table
Column Name Data Type Example
id identifier 1
tag_name text “salad”
tag_vector vector [0.0137,0.0421, · · · ,0.0183]

Recipe Table stores 330,922 recipes from Recipe1M2. As
shown in Table 2, Recipe Table inherits recipe_id and recipe
images URIs from Recipe1M as two attributes. We merge
Recipe1M’s ingredients and instructions as a single string
attribute called description.

In addition to the original data from Recipe1M, Recipe
Table has two vector attributes, images_embedding and de-
scription_embedding. They are two 1,024-dimensional vector
embeddings of recipe images and descriptions based on the
cross-modal embedding model from [68]. We also extend the
recipe item with an additional scalar attribute: popularity, a
random integer in the range [0,10000].

Tag Table samples 10,000 recipes from Recipe1M, and
assigns of tags for them. As shown in Table 3, Tag Table has
scalar attributes of id and tag_name. Attribute tag_name is
a set of strings of manually assigned tags (e.g. dessert, main
course, salad, pizza, etc), and id is a unique integer assigned to
the tag set. Each Tag Table row also has a tag_vector, which
is a 1,024-dimensional images_embedding of a recipe using
the same embedding model of the Recipe Table.
Vector similarity queries in SQL. We designed 7 SQL queries
to emulate various vector online application scenarios (§2.1).
In particular, we also designed Q8 which runs an analytic join
query based on vector similarity match. These 8 relational
queries cover most SQL operators of Projection, Index
Scan, Sort with Limit, Filter, Join, which are impor-
tant for online queries over vector and scalar data-set.

• Q1: Single-Vector TopK.

SELECT rec ipe_ id FROM Recipe
ORDER BY INNER_PRODUCT(images_embedding ,

${p_images_embedding}) LIMIT 50;

• Q2: Single-Vector TopK + Numeric Filter.

SELECT rec ipe_ id FROM Recipe
WHERE p o p u l a r i t y <= ${p_popularity}
ORDER BY INNER_PRODUCT(images_embedding ,

${p_images_embedding}) LIMIT 50;

• Q3: Single-Vector TopK + String Filter.

SELECT rec ipe_ id FROM Recipe
WHERE d e s c r i p t i o n NOT LIKE "%${p_ingredient}%"
ORDER BY INNER_PRODUCT(images_embedding ,

${p_images_embedding}) LIMIT 50;

• Q4: Multi-Column TopK.
SELECT rec ipe_ id FROM Recipe
ORDER BY INNER_PRODUCT(images_embedding ,

${p_images_embedding}) + WEIGHT * INNER_PRODUCT(
descr ipt ion_embedding , ${p_description_embedding})

LIMIT 50;

2We remove those in the 1 Million recipes that miss any of the ingredients,
cooking instructions, and related images.

• Q5: Multi-Column TopK + Numeric Filter.

SELECT rec ipe_ id FROM Recipe
WHERE p o p u l a r i t y <= ${p_popularity}
ORDER BY INNER_PRODUCT(images_embedding ,

${p_images_embedding}) + WEIGHT * INNER_PRODUCT(
descr ipt ion_embedding , ${p_description_embedding})

LIMIT 50;

• Q6: Multi-Column TopK + String Filter.

SELECT rec ipe_ id FROM Recipe
WHERE d e s c r i p t i o n NOT LIKE "%${p_ingredient}%"
ORDER BY INNER_PRODUCT(images_embedding ,

${p_images_embedding}) + WEIGHT * INNER_PRODUCT(
descr ipt ion_embedding , ${p_description_embedding})

LIMIT 50;

• Q7: Vector Range Filter.

SELECT rec ipe_ id FROM Recipe
WHERE INNER_PRODUCT(images_embedding , ${p_images_embedding})

<= ${D} ;

• Q8: Join.

SELECT Recipe . rec ipe_ id , Tag . tag_name
FROM Recipe JOIN Tag
ON INNER_PRODUCT(Recipe . images_embedding , Tag . tag_vec tor)

<= ${D} ;

We ran these 8 queries on VBASE and compared them with
query processing in other systems. For each query, we gen-
erated 10,000 substitution parameters to cover various query
conditions. In particular, we set K to 50 for TopK queries
as in the experiment of Milvus [76]. We also designed the
numeric filtering constraints to cover both high and low fil-
tering selectivities. p_popularity is incremented from 1 to
10000. p_ingredient is sampled from ingredients keywords in
Recipe1M. WEIGHT is 1. D is 0.1 in Q7 and 0.01 in Q8.
Evaluation metrics. Vector query executions are approximate,
hence we evaluate both query accuracy and performance in
terms of recall and latency, respectively. Recall is a new met-
ric to conventional database evaluations. It evaluates query
accuracy against the ground truth. Recall has been widely
used in approximate vector search systems [2,3,76,86]. They
only evaluate recall because for TopK queries, recall and pre-
cision are the same as long as a system returns K results.
For other queries with range filter constraints, precision will
always be 1 if the system obeys the constraints. Therefore,
we use recall to represent query accuracy. For each query, we
calculate the average recall of the query results of all substi-
tution parameters. For each query in Q1-Q7, we measure the
average, median, 99th percentile latency from the execution
results of all substitution parameters. For Q8, we execute it 3
times and measure the average execution time.

5.2 Experiment Setup

Evaluation platform. All evaluations run on an Azure
VM,Standard_F64s_v2 [1], with 64 v-CPUs and 128 GiB
memory running Linux Ubuntu 20.04 LTS. All queries run
individually to avoid interference from other queries.

Baseline systems. We compare VBASE with the state-of-the-
art vector search and database systems that support vector
similarity queries.
Vector search baselines: We choose Milvus [76] and Elastic-
search [4] as our vector search baselines. Since they do not
support SQL interface, we hand code our benchmark queries.
We also implement Iterative Merging algorithm as claimed
in Milvus paper [76] to enable multi-column TopK queries,
although unavailable in its open-source code [8]. For Elas-
ticsearch we use the version implemented by Open Distro
(version 1.13) [9], which supports HNSW index.
Database baselines: For databases, we use the open-source
PASE [11, 86] that implements the TopK-only solutions using
tentative indices, and extended its maximum dimension sup-
port from 512 to 1024. We also run queries on PostgreSQL
(version 13) [12] as a baseline to show the performance of
traditional databases in performing vector similarity queries.
Common index settings. VBASE and baseline systems all
use HNSW [89] with the same vector index settings (M =
16,e f _construction = 200,e f _search = 64). HNSW is the
only vector index supported by PASE, Milvus, and Elastic-
search in common. Since HNSW index is kept in memory
when it is used, in order to better compare the performance
results of the index-based execution process without being
affected by the caching strategy of the main table adopted by
different systems, we also save the main table data in memory.
All the database baselines and VBASE also created a B-tree
index on popularity column to expedite numeric filtering.

5.3 Evaluation Results

Overview. Table 4 summarizes the overall evaluation results.
We can see that each baseline system based on approximate
vector indices (except PostgreSQL) can only process some of
the 8 queries, while VBASE can process all of them.

Although PostgreSQL can process all queries and produce
exact results, it uses a brutal force scan with a much higher
query latency than the rest of the systems. The 1000× lower
performance of PostgreSQL than other approximate systems
makes it irrelevant to address the low-latency “online” sce-
narios. We run queries on PostgreSQL mostly to get ground
truth to calculate the query result accuracy of other systems.

VBASE’s query performance on TopK (Q1) is similar to or
better than baseline systems because they essentially run the
same algorithm in different implementations. For queries that
are more complex than Q1, VBASE outperforms all baseline
systems by 100×−1000× because VBASE can determine
the optimal K̃ on-the-fly and others have to try different Ks to
get sufficient results. While VBASE produces superior query
performance, it can also achieve high recall similar to or even
higher than approximate queries on baseline systems.

Next, we discuss each query’s evaluation result in detail.
Q1 – Single vector TopK. Q1 is a TopK query without any

filters. All approximate systems including VBASE in our eval-
uation run the same algorithm and produce identical results,
therefore having the exact same recalls.

Nevertheless, we can see variations in Q1 latency from
different systems. The reasons for performance variations
are two-fold. The first reason is that these systems are im-
plemented in different languages (Milvus/Elasticsearch vs.
PASE/VBASE). For example, Milvus are implemented in
GoLang and C++, and Elasticsearch is implemented in Java
and C++. In comparison, PASE and VBASE are written in
C. In general, we can see implementation in C outperforms
other high-level language implementations by 2−10×.

The second reason for performance variation (PASE vs.
VBASE) is that VBASE needs to fetch slightly more tuples
than PASE. Although following the same algorithms and
traversing the same amount of vectors in the index, VBASE
follows an Iterator Model, which fetches every corresponding
tuple from the main table during index traversal. PASE’s
implementation visits vectors in the index and only fetches
the K tuples after getting TopK vectors in the index. As a
result, VBASE performs slightly worse, 2.8% slower than
PASE in terms of average and 99 percentile latency.
Q2-3 – Single vector TopK with scalar filter. Q2 and Q3 are
vector similarity queries with filtering on scalar attributes. Q2
and Q3 differ in their filter predicates, where Q2 uses numeric
filtering on the integer attribute popularity, and Q3 runs string
filtering based on a regular expression. All baselines support
Q2 and Q3, with an exception of Milvus for Q3 because it
does not support string data type.

All approximate baselines run a single shot of K′. Based on
different guesses of K′s, baseline systems produce different
results. Elasticsearch undershot K for Q2 and Q3, therefore
cannot produce sufficient results and has low query accu-
racy. Even though Elasticsearch has fewer data traversals than
the rest of the approximate systems with higher accuracy, its
query latency is still the worst, possibly due to system ineffi-
ciency like in Q1. PASE and Milvus overshot K and produce
high result accuracy like VBASE, but they have longer query
latency because they traverse more data than VBASE.

Q3 has a fixed filter selectivity of around 0.9. For Q2 we
have 10,000 queries of different parameters with uniform dis-
tribution of filter selectivity from 0 to 1. We compared the eval-
uation results of two best approximate systems VBASE and
PASE for Q2, under three representative f ilter_selectivity
values (0.03, 0.3, 0.9) from low to high (Table 5). We found
that different filter selectivities result in different optimal K̃s:
the lower the selectivity, the more data a system needs to
examine, therefore larger K̃. Because K̃ is dynamic, PASE’s
static guess of K′ cannot produce constantly high recalls un-
der all filter selectivities. A conservatively large guess of
K′ = 10,000 can produce near-exact results by PASE, how-
ever, its query performance deteriorates dramatically. We also
present the average K̃ and standard deviation under different
filter selectivities in Table 5. K̃ varies for different filter se-

Table 4: 8 Queries Result Overview (Latency: ms)

System
Q1:Single-Vector TopK Q2:Single-Vector TopK+Numeric Filter Q3:Single-Vector TopK+String Filter Q4:Multi-Column TopK

Recall Latency Recall Latency Recall Latency Recall Latency
average median 99th average median 99th average median 99th average median 99th

PostgreSQL 1 2,980.1 3,021.7 3,133.6 1 1,108.3 1,124.1 2,286.2 1 4,322.2 3529.3 9,953.0 1 5,610.0 5,604.7 5,769.8
PASE 0.9949 4.8 3.5 5.1 0.9987 29.3 28.7 61.7 0.9982 13.2 10.7 17.9 - - - -
Milvus 0.9949 9.4 9 12.7 0.9919 33.7 23.9 121.4 - - - - 0.9041 6,696.4 8,349.3 9,299.0

Elasticsearch 0.9949 43.1 41.8 48.9 0.5010 97.9 98.1 118.1 0.8378 79.9 90.0 100.9 - - - -
VBase 0.9949 4.9 3.9 5.3 0.9989 11.7 6.3 51.7 0.9983 7.9 6.7 10.4 0.9696 19.8 18.4 46.4

System
Q5:Multi-Column TopK+Numeric Filter Q6:Multi-Column TopK+String Filter Q7:Vector Range Filter Q8:Join

Recall Latency Recall Latency Recall Latency Recall Latency
average median 99th average median 99th average median 99th average median 99th

PostgreSQL 1 1,192.9 1,234.4 2,343.6 1 6,543.2 5,996.3 16,734.6 1 8,244.9 8,212.6 8,641.6 1 129,051,273.9 - -
PASE - - - - - - - - - - - - - - - -
Milvus 0.9691 12,637.9 5,617.4 36,887.9 - - - - - - - - - - - -

Elasticsearch - - - - - - - - - - - - - - - -
VBase 0.9805 35.8 24.9 160.7 0.9626 21.6 18.3 64.8 0.9840 10.8 2.2 168.9 0.9992 16,335.9 -1 -1

1 We have only run one query parameter for Q8, so average, median and 99th percentile latency are the same.

Figure 6: 99th Percentile Query Latency (ms)

lectivities. Even under the same selectivity, it also varies for
different queries and the standard deviation is very large.

VBASE can always produce the best query performance
with high recalls since it can determine K̃ on the fly.

Q4-6 – Multi-column TopK. Only Milvus and VBASE sup-
port Q4-6, which are TopK queries over multiple vector in-
dices. Q5,6 adds scalar filtering to Q4 just like in Q2,3, and
Milvus cannot support string filter conditions in Q6. Milvus
tries different K′ to produce a sufficiently large intersection of
multiple TopK results from different indices. Milvus’s perfor-
mance is worse than PostgreSQL which uses sequential table
scan, because it cannot finish after several rounds of TopK
guesses and accumulates a large number of random reads.
In comparison, VBASE determines the optimal K̃ per each
vector index based on relaxed monotonicity. Consequently,
VBASE outperforms Milvus by 200−300× in terms of query
latencies for Q4-6, and produces higher recalls (96%+).

We also experimented multi-column TopK queries with 4
kinds of weights in the ranking function, with different index-
iteration algorithms as introduced in §4.4 (see Table 7). When
the difference in weights is large (1:10), the greedy algorithm
produces the best performance with high recalls. This is be-
cause the greedy approach identifies low-quality indices (i.e.
ones with low-ranking weights) quickly, and avoids traversing
them as much as possible. However, when weight differenti-
ation decreases, the greedy algorithm can easily get trapped
in local optima. This shortcoming of the greedy method is
self-evident for a weight ratio of 1:1, where we can see greedy
strategy extracts the highest number of entities while produc-
ing the lowest recall. In contrast, VBASE shows higher recalls
in all situations by dynamically determining a better strategy

to switch among different indices while outperforming by 5%
lower latency than the round-robin approach.
Q7 – Vector range filter. Table 4 shows that only VBASE
supports Q7. PASE does not support Q7 by default. We add
a Order By distance clause with a hand-tuned “limit K” to
force PASE to use its approximate vector index. This way it
simulates the results of Q7. Like in Q2, it is difficult to set an
appropriate K′ for PASE ahead of time as shown in Table 6.
We also present the average K̃ and standard deviation, which
also shows K̃ changes dramatically for different queries. E.g.,
sometimes K is required to be 2300+ for optimality. VBASE
can achieve a great trade-off between query latency and recalls
because its execution engine can determine K̃ on-the-fly based
on relaxed monotonicity.

On average Q7 only returns a small number of results that
fit within the range. However, a small percentage of Q7s
produce up to 10,000 results, which incurs high query costs
in VBASE. Therefore we can see that, in VBASE, Q7’s 99th
percentile latency is much higher than the average (168.9ms
vs 10.8ms) while the median is much smaller than the average.
Q8 – Join. PostgreSQL performs nested-loop join on table
scan to get accurate results. In Q8, VBASE is 7,900x faster
with recall=0.9992. Other systems cannot run this query due
to the lack of a unified query engine.

5.4 VBASE with SPANN

Table 8 shows the evaluation results for VBASE with
SPANN [25]. We run VBASE with SPANN on Azure VM
Standard_L16s_v3 with NVMe disks. SPANN is a partition-
based ANNS index that uses external memory, i.e. disks. As

Table 5: Vector Search with Scalar Filter (Latency: ms)

System

Selectivity = 0.03 Selectivity = 0.3 Selectivity = 0.9
avg(K̃) = 1,772,σ = 224.16 avg(K̃) = 291,σ = 59.65 avg(K̃) = 188,σ = 50.33

Recall
Latency

Recall
Latency

Recall
Latency

average median 99th average median 99th average median 99th
PASE(K′ = 100) 0.0567 5.1 5.1 6.3 0.5844 5.9 5.9 9.1 0.9947 5.5 5.7 10.4

PASE(K′ = 1,000) 0.5885 21.5 21.2 30.8 0.9998 15.4 15.0 21.5 1 10.1 10.0 16.3
PASE(K′ = 10,000) 1 62.8 62.5 78.7 1 48.9 49.3 61.1 1 41.8 41.7 53.1

VBASE 0.9987 34.5 34.0 44.8 0.9966 7.6 7.0 8.5 0.9990 5.7 5.3 7.2

Table 6: Range Filter (Latency: ms)

System
avg(K̃) = 590,σ = 1758.48

Recall
Latency

average median 99th
PASE(K′ = 100) 0.7103 7.3 6.9 8.8

PASE(K′ = 1,000) 0.9387 44.3 43.6 54.7
PASE(K′ = 10,000) 0.9991 392.1 390.5 484.9

VBASE 0.9840 10.8 2.2 168.9

Table 7: Multi-Column TopK Comparison (Latency: ms)
Weight1 Algorithm NumOfScans2 Latency Recall

1 : 1
Round-Robin 651.93 20.91 0.9715
Greedy3 699.02 21.70 0.9313
VBASE 638.56 20.56 0.9705

1 : 2
Round-Robin 617.22 20.25 0.9802
Greedy3 612.51 19.94 0.9655
VBASE 593.99 19.78 0.9818

1 : 5
Round-Robin 463.39 16.93 0.9946
Greedy3 372.96 14.90 0.9949
VBASE 409.31 15.69 0.9961

1 : 10
Round-Robin 363.47 14.81 0.9981
Greedy3 274.86 12.69 0.9985
VBASE 311.66 13.97 0.9987

1 The weight ratio of two distances (1 : x) in the ranking function.
2 The average number of times we scan the two vector indices.
3 In the greedy method, we first traverse each index 20 times and we find

the index with the lowest average distance. Then, we extract candidates
from this index only.

a result, query latencies on VBase with SPANN are gener-
ally higher than those for HNSW which are in-memory. This
shows that VBASE can support both partition-based vector
indices as well as graph-based ones. In addition VBASE can
integrate indices stored both in memory and on disk seemly.

5.5 Cost Estimation

Selectivity estimation accuracy. We evaluate the accuracy of
the selectivity estimation for vector range filter in terms of
q-error [61]:

Qerr = max(
Selesti

Selreal
,

Selreal

Selesti
).

As demonstrated in Figure 7, estimation based on sampling
can provide a q-error less than 1.1 for most cases. When se-
lectivity is lowest at 0.05, our samples cannot provide a high

Table 8: Queries on VBASE with SPANN (Latency: ms)

Queries Recall Latency
average median 99th

Q1 0.9911 9.4 9.2 11.6
Q2 0.9214 10.7 9.3 44.9
Q3 0.9847 9.7 9.4 11.8
Q4 0.9481 32.2 28.7 68.2
Q5 0.9757 87.4 55.9 519.7
Q6 0.9516 40.1 32.1 126.2
Q7 0.9923 17.8 9.3 283.5
Q8 0.9638 87,729.3 -1 -1

1 We have only run one query parameter for Q8.

resolution, therefore its q-error increases up to 1.27. Increas-
ing the sampling rate in cost estimation can reduce q-error
further, but this increases selectivity estimation time for query
planning, which is infeasible for online queries. In our ex-
periments, such estimation accuracy is sufficient to support a
good query plan strategy.

In comparison, systems like PASE [11] don’t provide an
estimation for selectivity and PASE sets the default value of
selectivity estimation to 0.5.

Figure 7: Q-error in different selectivity. Default estimated
selectivity=0.5

Query Planning. We evaluate the efficacy of query planning
using the following query.

SELECT recipe_id FROM Recipe WHERE
INNER_PRODUCT(q, images_embedding) < ${r}
AND popularity < ${p};

↪→

↪→

The vector range filter and the scalar filter can be accelerated
via vector index or B-tree. Our experiments show that VBASE
can correctly choose the best execution plan under different
selectivities, because our estimations of selectivity, vector
computation, and index scan cost are accurate enough for

VBASE to construct good plans by reusing PostgreSQL’s
built-in mechanism.

Figure 8a shows execution times of different planning
strategies for varying scalar selectivities and a fixed vector
filter selectivity. The default strategy estimates selectivity as
0.5 as PASE does. The result demonstrates that VBASE can
produce execution plans that closely match the ground truth
of the best choice of index scan strategies. When scalar selec-
tivity is less than 0.18, VBASE predicts accurately that the
cost of execution via B-tree index is smaller than vector index
traversal, and chooses to run it. Likewise, if scalar selectivity
is over 0.18, VBASE correctly chooses vector index traversal.

On the other hand, experiments in Figure 8b vary vector
filter selectivities and fix scalar filter selectivity. Like in Fig-
ure 8a, the result shows VBASE can create the high efficacy
of query planning based on highly accurate cost estimation.

In comparison, systems like PASE do not provide an ac-
curate estimation for selectivity. And they do not tune cost
estimation for vector computation and vector index traver-
sal either. The inaccurate estimation causes PASE to always
execute queries via B-tree index in this experiment.

(a) (b)

Figure 8: Query execution time with different estimation.
We fixed range filter selectivity=0.13 in (a), and scalar filter
selectivity=0.90 in (b)

6 Related Works

Similarity Query in Databases. Several works [20,21,71,73,
74] have explored extending database systems to support accu-
rate similarity query of low-dimensional vector data, in which
K-NN(TopK) and range filter query are well described. R-
Tree [38], KD-Tree [34], M-Tree [27], Slim-Trees [47] can be
used in these works as indices for low-dimensional data. [20]
proposes to include similarity queries to SQL and run them
on SIREN [21]. [71] presents similarity Join and similarity
Group-by operators. The similarity Group-by operator for
high-dimensional vector is actually equivalent to the cluster-
ing operation, which has been well-studied by [15, 18, 50, 65].
However, all of these works are about clustering data on the
main table instead of the vector indices.
Vector Indices. Vector indices support approximate nearest
neighbor search efficiently on high-dimensional vector by
TopK interface. They can be divided into two categories:
graph-based approach and partition-based approach. The

partition-based approach divides the whole vector space into
many sub-spaces, and uses some metric (e.g. a centroid, a
hash value or a divisional plane) to represent all vectors that
belong to a sub-space. During the traverse, it navigates a query
to its approximate nearest sub-spaces step by step based on
distances between the query and the representative metric
of sub-spaces. Representative partition-based approaches in-
clude clustering-based solutions [5, 17, 19, 25, 44, 45, 48, 90],
hash-based solutions [30, 41, 79, 81, 85], and tree-based solu-
tions [23, 57, 62, 78]. The graph-based approach represents
each vector as a vertex, each connected to its nearest vectors
(i.e. neighbors) by edges in a graph. There are also some
shortcut edges connecting to distant vector vertices, which
can speed up the graph traversals. Using this neighborhood
graph, index traversal can be guided by a query approximately
towards its closest neighbors step by step from a fixed starting
point [32, 39, 43, 55, 58, 77]. TopK interface in vector indices
has limited query expressiveness.
Vector Databases based on TopK. AnalyticDB-V [80],
PASE [86], Milvus [76], and Elasticsearch [4] support com-
plex vector queries based on the original TopK interface in vec-
tor indices. AnalyticDB-V [80] and PASE [86] integrate vec-
tor indices into the database engine to support SQL interface
for similarity queries. Elasticsearch [4] is a distributed full-
text search engine, providing approximate nearest neighbor
search based on HNSW [89]. AnalyticDB-V [80], PASE [86],
and Elasticsearch [4] begin to support vector search plus scalar
attribute filtering. Milvus [76] is a data management system
to efficiently manage large-scale vector data, which can ad-
ditionally support multi-column TopK queries by iteratively
speculating the K with a growing value. In contrast, VBASE
does not rely on a tentative index collected by TopK.

7 Conclusion

This paper presents VBASE, a vector database that integrates
high-dimensional vector indices into PostgreSQL, a relational
database to facilitate complex approximate similarity queries.
Unlike conventional approaches that leverage TopK to collect
the target vector’s K nearest neighbors where a conventional
index is constructed for query execution, VBASE builds on
relaxed monotonicity, a common foundation between conven-
tional and high-dimensional indices. This common founda-
tion allows VBASE to build a unified query execution engine
that produces query results equivalent to those produced by
TopK-based solutions with the optimal K̃. As a result, VBASE
significantly outperforms state-of-the-art vector systems on
complex vector queries.

8 Acknowledgement

We would like to thank our shepherd Marco Serafini and the
anonymous reviewers for their insightful comments.

References

[1] Azure vm fsv2-series. https://
learn.microsoft.com/en-us/azure/virtual-
machines/fsv2-series.

[2] Benchmarking nearest neighbors. http://ann-
benchmarks.com/.

[3] Billion-scale anns benchmarks. https://big-ann-
benchmarks.com/.

[4] Elasticsearch. https://www.elastic.co/.

[5] Facebook faiss. https://github.com/
facebookresearch/faiss.

[6] Facebook simsearchnet. https://ai.facebook.com/
blog/using-ai-to-detect-covid-19-
misinformation-and-exploitative-content/.

[7] Google multisearch. https://blog.google/
products/search/multisearch/.

[8] Milvus. https://github.com/milvus-io/milvus.

[9] Open distro. https://github.com/opendistro-
for-elasticsearch/.

[10] Openai chatgpt retrieval plugin. https://github.com/
openai/chatgpt-retrieval-plugin.

[11] Pase. https://github.com/forrest-2007/PASE.

[12] postgresql. https://www.postgresql.org/.

[13] The TPC-C benchmark. http://www.tpc.org/tpcc/.

[14] The TPC-H benchmark. http://www.tpc.org/tpch/.

[15] Saurabh Arora and Inderveer Chana. A survey of clus-
tering techniques for big data analysis. In 2014 5th
International Conference - Confluence The Next Gen-
eration Information Technology Summit (Confluence),
pages 59–65, 2014.

[16] M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin,
K. P. Eswaran, J. N. Gray, P. P. Griffiths, W. F. King,
R. A. Lorie, P. R. McJones, J. W. Mehl, G. R. Putzolu,
I. L. Traiger, B. W. Wade, and V. Watson. System r:
Relational approach to database management. ACM
Trans. Database Syst., 1(2):97–137, jun 1976.

[17] Artem Babenko and Victor Lempitsky. The inverted
multi-index. IEEE transactions on pattern analysis and
machine intelligence, 37(6):1247–1260, 2014.

[18] B. Hari Babu, N. Subhash Chandra, and T. V. Gopal.
Clustering algorithms for high dimensional data – a
survey of issues and existing approaches. 2012.

[19] Dmitry Baranchuk, Artem Babenko, and Yury Malkov.
Revisiting the inverted indices for billion-scale approxi-
mate nearest neighbors. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 202–
216, 2018.

[20] M. C. N. Barioni, H. L. Razente, A. J. M. Traina, and
C. Traina. Seamlessly integrating similarity queries in
sql. Softw. Pract. Exper., 39(4):355–384, mar 2009.

[21] Maria Camila N. Barioni, Humberto Razente, Agma
Traina, and Caetano Traina. Siren: A similarity retrieval
engine for complex data. In Proceedings of the 32nd
International Conference on Very Large Data Bases,
VLDB ’06, page 1155–1158. VLDB Endowment, 2006.

[22] Rudolf Bayer and Edward McCreight. Organization and
maintenance of large ordered indices. In Proceedings of
the 1970 ACM SIGFIDET (Now SIGMOD) Workshop on
Data Description, Access and Control, pages 107–141,
1970.

[23] Jon Louis Bentley. Multidimensional binary search trees
used for associative searching. Communications of the
ACM, 18(9):509–517, 1975.

[24] Donald D. Chamberlin. Early history of sql. IEEE
Annals of the History of Computing, 34(4):78–82, 2012.

[25] Qi Chen, Bing Zhao, Haidong Wang, Mingqin Li,
Chuanjie Liu, Zengzhong Li, Mao Yang, and Jingdong
Wang. Spann: Highly-efficient billion-scale approx-
imate nearest neighborhood search. In M. Ranzato,
A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wort-
man Vaughan, editors, Advances in Neural Information
Processing Systems, volume 34, pages 5199–5212. Cur-
ran Associates, Inc., 2021.

[26] Sheng Chen, Akshay Soni, Aasish Pappu, and Yashar
Mehdad. Doctag2vec: An embedding based multi-label
learning approach for document tagging. arXiv preprint
arXiv:1707.04596, 2017.

[27] Paolo Ciaccia, Marco Patella, and Pavel Zezula. M-
tree: An efficient access method for similarity search in
metric spaces. International conference on very large
data bases (VLDB), 08 2001.

[28] Kenneth L Clarkson. An algorithm for approximate
closest-point queries. In Proceedings of the tenth annual
symposium on Computational geometry, pages 160–164,
1994.

[29] E. F. Codd. A relational model of data for large shared
data banks. Commun. ACM, 13(6):377–387, jun 1970.

[30] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Va-
hab S. Mirrokni. Locality-sensitive hashing scheme

https://learn.microsoft.com/en-us/azure/virtual-machines/fsv2-series
https://learn.microsoft.com/en-us/azure/virtual-machines/fsv2-series
https://learn.microsoft.com/en-us/azure/virtual-machines/fsv2-series
http://ann-benchmarks.com/
http://ann-benchmarks.com/
https://big-ann-benchmarks.com/
https://big-ann-benchmarks.com/
https://www.elastic.co/
https://github.com/facebookresearch/faiss
https://github.com/facebookresearch/faiss
https://ai.facebook.com/blog/using-ai-to-detect-covid-19-misinformation-and-exploitative-content/
https://ai.facebook.com/blog/using-ai-to-detect-covid-19-misinformation-and-exploitative-content/
https://ai.facebook.com/blog/using-ai-to-detect-covid-19-misinformation-and-exploitative-content/
https://blog.google/products/search/multisearch/
https://blog.google/products/search/multisearch/
https://github.com/milvus-io/milvus
https://github.com/opendistro-for-elasticsearch/
https://github.com/opendistro-for-elasticsearch/
https://github.com/openai/chatgpt-retrieval-plugin
https://github.com/openai/chatgpt-retrieval-plugin
https://github.com/forrest-2007/PASE
https://www.postgresql.org/
http://www.tpc.org/tpcc/
http://www.tpc.org/tpch/

based on p-stable distributions. In Proceedings of the
Twentieth Annual Symposium on Computational Geom-
etry, SCG ’04, pages 253–262, 2004.

[31] Jeffrey Dean and Luiz André Barroso. The tail at scale.
Communications of the ACM, 56(2):74–80, 2013.

[32] Wei Dong, Moses Charikar, and Kai Li. Efficient k-
nearest neighbor graph construction for generic similar-
ity measures. In Proceedings of the 20th International
Conference on World Wide Web, WWW 2011, Hyder-
abad, India, March 28 - April 1, 2011, pages 577–586,
2011.

[33] Ronald Fagin, Amnon Lotem, and Moni Naor. Opti-
mal aggregation algorithms for middleware. In Peter
Buneman, editor, Proceedings of the Twentieth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, May 21-23, 2001, Santa Barbara,
California, USA. ACM, 2001.

[34] Jerome H. Friedman, Jon Louis Bentley, and
Raphael Ari Finkel. An algorithm for finding best
matches in logarithmic expected time. ACM Trans.
Math. Softw., 3(3):209–226, sep 1977.

[35] G. Graefe. Volcano an extensible and parallel query
evaluation system. IEEE Trans. on Knowl. and Data
Eng., 6(1):120–135, feb 1994.

[36] Wayne D Gray and Deborah A Boehm-Davis. Mil-
liseconds matter: An introduction to microstrategies and
to their use in describing and predicting interactive be-
havior. Journal of experimental psychology: applied,
6(4):322, 2000.

[37] Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming
Zhou, and Jian Yin. Unixcoder: Unified cross-modal
pre-training for code representation. In Proceedings of
the 60th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pages
7212–7225, 2022.

[38] Antonin Guttman. R-trees: A dynamic index structure
for spatial searching. In Proceedings of the 1984 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’84, page 47–57, New York, NY, USA,
1984. Association for Computing Machinery.

[39] Kiana Hajebi, Yasin Abbasi-Yadkori, Hossein Shahbazi,
and Hong Zhang. Fast approximate nearest-neighbor
search with k-nearest neighbor graph. In IJCAI 2011,
Proceedings of the 22nd International Joint Conference
on Artificial Intelligence, Barcelona, Catalonia, Spain,
July 16-22, 2011, pages 1312–1317, 2011.

[40] G. D. Held, M. R. Stonebraker, and E. Wong. Ingres:
A relational data base system. In Proceedings of the
May 19-22, 1975, National Computer Conference and
Exposition, AFIPS ’75, page 409–416, New York, NY,
USA, 1975. Association for Computing Machinery.

[41] P. Jain, B. Kulis, and K. Grauman. Fast image search for
learned metrics. In 2008 IEEE Conference on Computer
Vision and Pattern Recognition, pages 1–8, June 2008.

[42] Virajith Jalaparti, Peter Bodik, Srikanth Kandula, Ishai
Menache, Mikhail Rybalkin, and Chenyu Yan. Speeding
up distributed request-response workflows. ACM SIG-
COMM Computer Communication Review, 43(4):219–
230, 2013.

[43] Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vard-
han Simhadri, Ravishankar Krishnawamy, and Rohan
Kadekodi. Diskann: Fast accurate billion-point nearest
neighbor search on a single node. Advances in Neural
Information Processing Systems, 32, 2019.

[44] Herve Jegou, Matthijs Douze, and Cordelia Schmid.
Product quantization for nearest neighbor search. IEEE
transactions on pattern analysis and machine intelli-
gence, 33(1):117–128, 2010.

[45] Hervé Jégou, Romain Tavenard, Matthijs Douze, and
Laurent Amsaleg. Searching in one billion vectors: re-
rank with source coding. In 2011 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 861–864. IEEE, 2011.

[46] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-
scale similarity search with gpus. IEEE Trans. Big Data,
7(3):535–547, 2021.

[47] Caetano Jr, Agma Traina, Bernhard Seeger, and Christos
Faloutsos. Slim-trees: High performance metric trees
minimizing overlap between nodes. 03 2000.

[48] Yannis Kalantidis and Yannis Avrithis. Locally op-
timized product quantization for approximate nearest
neighbor search. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 2321–2328, 2014.

[49] Noam Koenigstein, Parikshit Ram, and Yuval Shavitt.
Efficient retrieval of recommendations in a matrix fac-
torization framework. In Proceedings of the 21st ACM
international conference on Information and knowledge
management, pages 535–544, 2012.

[50] Hans-Peter Kriegel, Peer Kröger, and Arthur Zimek.
Clustering high-dimensional data: A survey on subspace
clustering, pattern-based clustering, and correlation clus-
tering. ACM Trans. Knowl. Discov. Data, 3(1), mar
2009.

[51] Brian Kulis and Kristen Grauman. Kernelized locality-
sensitive hashing for scalable image search. In 2009
IEEE 12th International Conference on Computer Vi-
sion, pages 2130–2137, 2009.

[52] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton
Lee, et al. Natural questions: a benchmark for question
answering research. Transactions of the Association for
Computational Linguistics, 7:453–466, 2019.

[53] Hui Li, Tsz Nam Chan, Man Lung Yiu, and Nikos
Mamoulis. Fexipro: fast and exact inner product re-
trieval in recommender systems. In Proceedings of the
2017 ACM International Conference on Management of
Data, pages 835–850, 2017.

[54] Jie Li, Haifeng Liu, Chuanghua Gui, Jianyu Chen,
Zhenyuan Ni, Ning Wang, and Yuan Chen. The de-
sign and implementation of a real time visual search
system on JD e-commerce platform. In Proceedings of
the 19th International Middleware Conference, Middle-
ware Industrial Track 2018, Rennes, France, December
10-14, 2018, pages 9–16. ACM, 2018.

[55] Jie Ren. Minjia Zhang. Dong Li. Hm-ann: Efficient
billion-point nearest neighbor search on heterogeneous
memory. In Advances in Neural Information Processing
Systems, 2020.

[56] Defu Lian, Haoyu Wang, Zheng Liu, Jianxun Lian, En-
hong Chen, and Xing Xie. Lightrec: A memory and
search-efficient recommender system. In Proceedings
of The Web Conference 2020, pages 695–705, 2020.

[57] Ting Liu, Andrew W Moore, Alexander Gray, and
Ke Yang. An investigation of practical approximate
nearest neighbor algorithms. Advances in Neural Infor-
mation Processing Systems 17 [Neural Information Pro-
cessing Systems, {NIPS} 2004, December 13-18, 2004,
Vancouver, British Columbia, Canada], pages 825–832,
2004.

[58] Yu A Malkov and Dmitry A Yashunin. Efficient and
robust approximate nearest neighbor search using hier-
archical navigable small world graphs. arXiv preprint
arXiv:1603.09320, 2016.

[59] Javier Marin, Aritro Biswas, Ferda Ofli, Nicholas Hynes,
Amaia Salvador, Yusuf Aytar, Ingmar Weber, and Anto-
nio Torralba. Recipe1m+: A dataset for learning cross-
modal embeddings for cooking recipes and food images.
IEEE transactions on pattern analysis and machine in-
telligence, 43(1):187–203, 2019.

[60] Antoine Miech, Dimitri Zhukov, Jean-Baptiste Alayrac,
Makarand Tapaswi, Ivan Laptev, and Josef Sivic.
Howto100m: Learning a text-video embedding by
watching hundred million narrated video clips. In Pro-
ceedings of the IEEE/CVF International Conference on
Computer Vision, pages 2630–2640, 2019.

[61] Guido Moerkotte, Thomas Neumann, and Gabriele
Steidl. Preventing bad plans by bounding the impact
of cardinality estimation errors. Proc. VLDB Endow.,
2(1):982–993, aug 2009.

[62] Marius Muja and David G. Lowe. Scalable Near-
est Neighbour Algorithms for High Dimensional Data.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 36(11):2227–2240, 2014.

[63] Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, and Li Deng. Ms
marco: A human generated machine reading compre-
hension dataset. In CoCo@ NIPS, 2016.

[64] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C Li, Ryan McElroy,
Mike Paleczny, Daniel Peek, Paul Saab, et al. Scaling
memcache at facebook. In 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
13), pages 385–398, 2013.

[65] Divya Pandove, Shivan Goel, and Rinkl Rani. System-
atic review of clustering high-dimensional and large
datasets. ACM Trans. Knowl. Discov. Data, 12(2), jan
2018.

[66] Mattis Paulin, Matthijs Douze, Zaid Harchaoui, Julien
Mairal, Florent Perronin, and Cordelia Schmid. Local
convolutional features with unsupervised training for im-
age retrieval. In Proceedings of the IEEE international
conference on computer vision, pages 91–99, 2015.

[67] Jianbin Qin, Wei Wang, Chuan Xiao, and Ying Zhang.
Similarity query processing for high-dimensional data.
Proc. VLDB Endow., 13(12):3437–3440, sep 2020.

[68] Amaia Salvador, Nicholas Hynes, Yusuf Aytar, Javier
Marin, Ferda Ofli, Ingmar Weber, and Antonio Torralba.
Learning cross-modal embeddings for cooking recipes
and food images. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 3020–
3028, 2017.

[69] Florian Schroff, Dmitry Kalenichenko, and James
Philbin. Facenet: A unified embedding for face recogni-
tion and clustering. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages
815–823, 2015.

[70] Minjoon Seo, Jinhyuk Lee, Tom Kwiatkowski, Ankur P
Parikh, Ali Farhadi, and Hannaneh Hajishirzi. Real-time
open-domain question answering with dense-sparse
phrase index. arXiv preprint arXiv:1906.05807, 2019.

[71] Yasin N. Silva, Walid G. Aref, Per-Ake Larson,
Spencer S. Pearson, and Mohamed H. Ali. Similarity
queries: Their conceptual evaluation, transformations,
and processing. The VLDB Journal, 22(3):395–420, jun
2013.

[72] Yukihiro Tagami. Annexml: Approximate nearest neigh-
bor search for extreme multi-label classification. In
Proceedings of the 23rd ACM SIGKDD international
conference on knowledge discovery and data mining,
pages 455–464, 2017.

[73] Caetano Traina, Andre Moriyama, Guilherme Rocha,
Robson Cordeiro, Cristina D. A. Ciferri, and Agma
Traina. The similarql framework: Similarity queries in
plain sql. In Proceedings of the 34th ACM/SIGAPP Sym-
posium on Applied Computing, SAC ’19, page 468–471,
New York, NY, USA, 2019. Association for Computing
Machinery.

[74] Caetano Traina, Agma J. M. Traina, Marcos R. Vieira,
Adriano S. Arantes, and Christos Faloutsos. Effi-
cient processing of complex similarity queries in rdbms
through query rewriting. In Proceedings of the 15th
ACM International Conference on Information and
Knowledge Management, CIKM ’06, page 4–13, New
York, NY, USA, 2006. Association for Computing Ma-
chinery.

[75] Robert E. Wagner. Indexing design considerations. IBM
Systems Journal, 12(4):351–367, 1973.

[76] Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin,
Peng Xu, Shengjun Li, Xiangyu Wang, Xiangzhou Guo,
Chengming Li, Xiaohai Xu, et al. Milvus: A purpose-
built vector data management system. In Proceedings
of the 2021 International Conference on Management
of Data, pages 2614–2627, 2021.

[77] Jing Wang, Jingdong Wang, Gang Zeng, Zhuowen Tu,
Rui Gan, and Shipeng Li. Scalable k-nn graph con-
struction for visual descriptors. In Computer Vision and
Pattern Recognition (CVPR), 2012 IEEE Conference on,
pages 1106–1113. IEEE, 2012.

[78] Jingdong Wang, Naiyan Wang, You Jia, Jian Li, Gang
Zeng, Hongbin Zha, and Xian Sheng Hua. Trinary-
projection trees for approximate nearest neighbor search.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 36(2):388–403, 2014.

[79] Jingdong Wang, Ting Zhang, Jingkuan Song, Nicu Sebe,
and Heng Tao Shen. A survey on learning to hash.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 40(4):769–790, 2018.

[80] Chuangxian Wei, Bin Wu, Sheng Wang, Renjie Lou,
Chaoqun Zhan, Feifei Li, and Yuanzhe Cai. Analyticdb-
v: A hybrid analytical engine towards query fusion for
structured and unstructured data. Proceedings of the
VLDB Endowment, 13(12):3152–3165, 2020.

[81] Yair Weiss, Antonio Torralba, and Rob Fergus. Spectral
hashing. In Advances in neural information processing
systems, pages 1753–1760, 2009.

[82] Xian Wu, Moses Charikar, and Vishnu Natchu. Local
density estimation in high dimensions. In Jennifer Dy
and Andreas Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, vol-
ume 80 of Proceedings of Machine Learning Research,
pages 5296–5305. PMLR, 10–15 Jul 2018.

[83] Xiang Wu, Ruiqi Guo, David Simcha, Dave Dopson, and
Sanjiv Kumar. Efficient inner product approximation in
hybrid spaces. ArXiv, abs/1903.08690, 2019.

[84] Shitao Xiao, Zheng Liu, Weihao Han, Jianjin Zhang,
Yingxia Shao, Defu Lian, Chaozhuo Li, Hao Sun, Denvy
Deng, Liangjie Zhang, et al. Progressively optimized
bi-granular document representation for scalable embed-
ding based retrieval. In Proceedings of the ACM Web
Conference 2022, pages 286–296, 2022.

[85] Hao Xu, Jingdong Wang, Zhu Li, Gang Zeng, Shipeng
Li, and Nenghai Yu. Complementary hashing for ap-
proximate nearest neighbor search. In Computer Vision
(ICCV), 2011 IEEE International Conference on, pages
1631–1638. IEEE, 2011.

[86] Wen Yang, Tao Li, Gai Fang, and Hong Wei. Pase:
Postgresql ultra-high-dimensional approximate nearest
neighbor search extension. In Proceedings of the 2020
ACM SIGMOD International Conference on Manage-
ment of Data, pages 2241–2253, 2020.

[87] Ian En-Hsu Yen, Satyen Kale, Felix Yu, Daniel
Holtmann-Rice, Sanjiv Kumar, and Pradeep Ravikumar.
Loss decomposition for fast learning in large output
spaces. In International Conference on Machine Learn-
ing, pages 5640–5649. PMLR, 2018.

[88] Zeynep Akkalyoncu Yilmaz, Shengjin Wang, Wei Yang,
Haotian Zhang, and Jimmy Lin. Applying bert to doc-
ument retrieval with birch. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP):
System Demonstrations, pages 19–24, 2019.

[89] Malkov. D A Yashunin. Yu A. Efficient and robust
approximate nearest neighbor search using hierarchical
navigable small world graphs. In IEEE Transactions
on Pattern Analysis and Machine Intelligence, pages
824–836, 2018.

[90] Ting Zhang, Chao Du, and Jingdong Wang. Composite
quantization for approximate nearest neighbor search.
In Proceedings of the 31th International Conference on
Machine Learning (ICML), volume 32, pages 838–846,
2014.

	Introduction
	Background
	Emerging Online Vector Queries
	The Division Between Databases and Vector Search Systems

	VBase Design
	Relaxed Monotonicity
	Unified Query Execution Engine
	Result Equivalence

	VBase Implementation
	Relaxed Monotonicity Check
	Query Execution Engine
	Query Planning
	Multi-Column Scan Optimization

	VBase Evaluation
	Evaluation Benchmark
	Experiment Setup
	Evaluation Results
	VBase with SPANN
	Cost Estimation

	Related Works
	Conclusion
	Acknowledgement

