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ABSTRACT
Considering the rapid spread of incidents like rumours or epidemics,
it is important to hinder their influence diffusion. However, none
of the existing works can well control the influence diffusion of a
community. Based on a novel metric named interaction frequency
that can measure the influence diffusion of a community, we aim to
remove 𝑏 nodes from a given community such that the interaction
frequency of the remaining nodes is minimized. We also design a
polynomial-time algorithm for the problem. The experiments show
our algorithm can efficiently hinder the influence diffusion.
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1 INTRODUCTION AND MOTIVATIONS
With the prevalence of social network platforms and the global
COVID-19 epidemic, influence diffusion models [2] have attracted
increasingly more attention than ever before. The infectious dis-
ease diffusion models usually consider human dynamics [5, 12]
and complex contagion process [3]. In the area of social network,
the previous works consider the network structure for defending
network stability [17, 22] or directly minimize the influence by re-
moving nodes [1, 20, 21] or edges [14, 15]. However, existing works
have never considered community structure in diffusion models.

Our paper aims to hinder the influence diffusion of a community
by removing nodes. Figure 1 presents a social network, where a
rumour is diffusing in the community 𝐶 and it may affect ignorant
people (green) via directed edges. To hinder the rumour propagation
of 𝐶 , our problem propose to remove a set 𝐵 from 𝐶 such that the
interaction frequency (a novel measure for influence diffusion) of
the remaining nodes is minimized.
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Figure 1: Motivation.
Hinder the Influence of𝐶
by Removing 𝐵.
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Figure 2: Motivation.
Interaction Frequency Deter-
mines Influence Diffusion.

We formalize the influence diffusion of a community by inter-
action frequency. Our definition is inspired by a work on human
incorporate network [7] that analytically finds (i) there is a tran-
sition that separates the local and global rumour spread; (ii) the
transition point is highly related to the interactions between com-
munities.

Figure 2 demonstrates that interaction frequency (IF) is effective
in measuring influence diffusion. The experiment is conducted
on the DBLP network and the SIGMOD community. For different
data points in the figure, we remove different proportions of edges
between SIGMOD and the outside. The 𝑥-axis is the IF of SIGMOD, and
the 𝑦-axis reports the proportion of people that are influenced by a
rumour simulation from SIGMOD. The simulation selects a random
node in SIGMOD as rumour source to run Monte Carlo using the
Maki–Thompson model (𝜆 = 0.1, 𝛼 = 1.0) [7]. In Figure 2, influence
diffusion is decreasing with the decrease of IF. When IF ≈ 0.001,
we can completely prevent rumour spread.

2 RELATEDWORK
Rumour Diffusion Model. The model is first proposed in [6] and
the MT (Maki-Thompson) model further considers the formation
of new edges [18]. In recent years, the models have included more
details such as human dynamics [5, 12] and knowledge diffusion
[19]. This work uses the MT model to investigate the effectiveness
of our model.
Influence Minimization. The problem aims to minimize the ex-
pected probability of influence diffusion. The initial works mini-
mize influence by removing edges [14, 15], while other works by
removing nodes [1, 20, 21]. Our work has the same goal as influ-
ence minimization, but we use interaction frequency instead of
probability to measure the diffusion.
Influence Maximization. The problem searches for a seed set of
fixed size that can maximize the expected probability of influence
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diffusion, and it is first proposed in [8, 9]. It can also be formalized
as a discrete optimization problem [13]. Influence maximization can
be extended to a temporal setting where the timestamp of influence
is considered [10, 11].

3 PRELIMINARIES
Let 𝐺 = (𝑉 , 𝐸) be a directed graph whose node set is 𝑉 and edge
set is 𝐸. If there exists an edge ⟨𝑢, 𝑣⟩ ∈ 𝐸, then 𝑣 is an out-neighbor
of 𝑢. The out-degree of a node 𝑢, denoted by 𝑑+𝑢 , is the number of
out-neighbors of 𝑢, i.e., 𝑑+𝑢 = |{⟨𝑢, 𝑣⟩ ∈ 𝐸}|.

Given a community𝐶 ⊆ 𝑉 and a node𝑢 ∈ 𝐶 , the cross-community
out-degree of 𝑢 is denoted by 𝑑∉𝐶𝑢 = |{⟨𝑢, 𝑣⟩ ∈ 𝐸 | 𝑢 ∈ 𝐶 ∧ 𝑣 ∉ 𝐶}|.
The concept of interaction frequency is inspired by [7] and is a
directed version of conductance [4].

Definition 3.1 (Interaction Frequency). Given a network 𝐺 and a
community 𝐶 , the interaction frequency 𝜔 (𝐶) of 𝐶 is the sum of
cross-community out-degree divided by the sum of out-degree, i.e.,

𝜔 (𝐶) = (∑𝑢∈𝐶 𝑑
∉𝐶
𝑢 )

(∑𝑢∈𝐶 𝑑+𝑢 )
.

According to [7] and Figure 2, rumour propagation can be largely
controlled if the interaction frequency is close to 0. Consequently,
we propose to remove a set 𝐵 from 𝐶 such that the interaction
frequency of the remaining community is minimized. We formalize
it as the LCIF problem.

Definition 3.2 (LCIF Problem). Given a directed graph𝐺 = (𝑉 , 𝐸),
a community 𝐶 ⊆ 𝑉 , and a budget 𝑏 (𝑏 < |𝐶 |), the least community
interaction frequency problem aims to remove a set 𝐵 of at most 𝑏
nodes (𝐵 ⊂ 𝐶) such that the interaction frequency of the remaining
community 𝜔 (𝐶 \ 𝐵) is minimized, where

𝜔 (𝐶 \ 𝐵) =
(∑𝑢∈𝐶\𝐵 𝑑

∉𝐶
𝑢 )

(∑𝑢∈𝐶\𝐵 𝑑
+
𝑢 )

.

4 APPROACH
We use a binary search to find a optimal solution to LCIF problem,
and the search lasts for 𝑇 rounds. Let 𝜔low = 0 and 𝜔high = 𝜔 (𝐶).
For each round in the binary search, we (i) set𝜔 ′ = (𝜔low + 𝜔high)/2;
(ii) test if 𝜔 ′ is a feasible interaction frequency, i.e., there exists a
𝐵′ satisfying 𝜔 (𝐶 \ 𝐵′) ≤ 𝜔 ′ and |𝐵′ | ≤ 𝑏; (iii) set 𝜔high = 𝜔 ′ if 𝜔 ′

is feasible and set 𝜔low = 𝜔 ′ otherwise. After the binary search,
we return 𝜔high as the least interaction frequency and return 𝐵ans
such that 𝜔 (𝐶 \ 𝐵ans) ≤ 𝜔high using Step (ii).

In the following, we detail Step (ii) that can both test if 𝜔 ′ is
feasible and return the set 𝐵′ that satisfies 𝜔 (𝐶 \ 𝐵′) ≤ 𝜔 ′.
Test the Feasibility of Interaction Frequency.Given a candidate
interaction frequency 𝜔 ′, we compute a set 𝐵′ ⊂ 𝐶 with the least
budget |𝐵′ | such that the interaction frequency is no more than 𝜔 ′,
i.e., 𝜔 (𝐶 \ 𝐵′) ≤ 𝜔 ′. In case |𝐵′ | ≤ 𝑏, we can confirm that 𝜔 ′ is a
feasible interaction frequency. Due to the equivalence below, we
can greedily remove the node 𝑢 ∈ 𝐶 with the highest (𝑑∉𝐶𝑢 −𝜔 ′𝑑+𝑢 ).∑

𝑢∈𝐶\𝐵′ 𝑑
∉𝐶
𝑢∑

𝑢∈𝐶\𝐵′ 𝑑+𝑢
≤ 𝜔 ′ ⇐⇒

∑︁
𝑢∈𝐶\𝐵′

(𝑑∉𝐶𝑢 − 𝜔 ′𝑑+𝑢 ) ≤ 0
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Figure 3: Our Method Decreases the Interaction Frequency
of the SIGMOD Community.

Specifically, we (i) sort all nodes in𝐶 in decreasing (𝑑∉𝐶𝑢 −𝜔 ′𝑑+𝑢 )
and store into 𝐶sorted; (ii) gradually add the nodes in 𝐶sorted to 𝐵′

until we have
∑
𝑢∈𝐶\𝐵′ (𝑑∉𝐶𝑢 − 𝜔 ′𝑑+𝑢 ) ≤ 0; (iii) if |𝐵′ | ≤ 𝑏, then

𝜔 ′ is a feasible interaction frequency and the current 𝐵′ satisfies
𝜔 (𝐶 \ 𝐵′) ≤ 𝜔 ′.
Time Complexity and Error Analysis. Let 𝑇 be the number of
rounds of the binary search and 𝑛𝐶 = |𝑉 (𝐶) | be the number of
vertices in 𝐶 . Our binary search requires 𝑂 (𝑛𝐶 log𝑛𝐶 ) time each
round, and 𝑂 (𝑇 · 𝑛𝐶 log𝑛𝐶 ) time overall. We also need to compute
the degrees of each vertex in 𝐶 using 𝑂 (∑𝑢∈𝑉 (𝐶) 𝑑

+
𝑢 ) before the

algorithm.
Assume 𝐵∗ is the answer of the LCIF problem and 𝐵ans is the

output of our algorithm, then the error of our algorithm is bounded
by |𝜔 (𝐶 \ 𝐵ans) − 𝜔 (𝐶 \ 𝐵∗) | ≤ 2−𝑇 . Our algorithm returns the
exact solution when 𝑇 is large enough (e.g., 100).

5 RESULTS
We use the DBLP network from SNAP [16]. The network contains
317,080 nodes, 1,049,866 edges, and 8,734 ground-truth communities.
We set 𝑇 = 500 in the experiment.

In Figure 3, we apply our algorithm to SIGMOD community which
contains 5172 nodes. Initially, the interaction frequency of SIGMOD
equals 0.596, and the rumour can easily spread in the global network.
With the increase of the budget, our algorithm can steadily decrease
the interaction frequency. When the budget 𝑏 = 2177 (removing
42.1% nodes in SIGMOD community), the interaction frequency of
SIGMOD drops to 0, i.e., the rumour diffusion is completely removed
according to Figure 2. The average runtime of different budgets is
2.95ms.
Contributions. Our principal contributions are as follows: (i) we
define interaction frequency and identify its connection to influence
diffusion; (ii) we propose a polynomial-time algorithm for mini-
mizing interaction frequency; (iii) the experiments verify that the
proposed algorithm can efficiently control the influence diffusion
in real-world networks.
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