
Breaking the Single-Reference-Vector Barrier in Approximate
Nearest Neighbor Search

Jiadong Xie
The Chinese University of Hong Kong

jdxie@se.cuhk.edu.hk

Jeffrey Liang
Australian National University

jeffrey.liang@anu.edu.au

Siyi Teng
The Chinese University of Hong Kong

syteng@se.cuhk.edu.hk

Jeffrey Xu Yu
The Hong Kong University of Science

and Technology (Guangzhou)
jeffreyxuyu@hkust-gz.edu.cn

Yingfan Liu∗
Xidian University

liuyingfan@xidian.edu.cn

Abstract
Approximate nearest neighbor (ANN) searches are commonly em-
ployed in various machine learning applications, such as recom-
mendation systems, but traditional ANN searches typically involve
only a single reference vector in a query. To broaden the capabil-
ities of ANN search and support multi-reference-vector queries,
thereby enabling a wider range of machine learning applications,
we introduce all/any-𝑘 ANN search. They aim to find vectors that
are similar to all or any of the multi-reference vectors in a query,
respectively. To effectively and efficiently support all/any-𝑘 ANN
search, we first propose distance metrics to evaluate the ranking of
vectors among those in the dataset for exact all/any-𝑘 NN. Build-
ing on this, we introduce search algorithms and prove they can
search according to the proposed distance metrics on graph indexes
designed for traditional ANN. Additionally, we further introduce
two-stage search algorithms for all/any-𝑘 ANN search to further en-
hance their search performance. We conduct extensive experiments
on real-world datasets to validate the efficiency and effectiveness
of our proposed algorithms compared to existing approaches.

CCS Concepts
• Information systems→ Information retrieval query pro-
cessing.

Keywords
Multiple Vector Search, High-Dimensional Vector
ACM Reference Format:
Jiadong Xie, Jeffrey Liang, Siyi Teng, Jeffrey Xu Yu, and Yingfan Liu. 2026.
Breaking the Single-Reference-Vector Barrier in Approximate Nearest Neigh-
bor Search. In Proceedings of the ACM Web Conference 2026 (WWW ’26),
April 13–17, 2026, Dubai, United Arab Emirates. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3774904.3792208

Resource Availability:
The source code of this paper has been made publicly available at https:
//github.com/Xiejiadong/Multi-Vector-Queries.
∗Yingfan Liu is the corresponding author.

This work is licensed under a Creative Commons Attribution 4.0 International License.
WWW ’26, Dubai, United Arab Emirates
© 2026 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2307-0/2026/04
https://doi.org/10.1145/3774904.3792208

1 Introduction
In the evolving landscape of machine learning models, different
data types can be transformed into vector representations, such
as text [31], images [33], audio [3], and graphs [17], enabling real-
world applications to conduct queries within vector spaces. Thus,
the ability to perform vector queries on high-dimensional vectors
is essential for contemporary machine learning applications, like
retrieval augmented generation [5, 21, 22], web search [6, 11, 28],
recommendation systems [32, 37], and passage search [23]. Tra-
ditional vector queries involve a single-reference vector in each
query, representing an item, and aim to identify similar items to it.
That is, given a single-reference vector 𝑞, the query aims to find
the 𝑘-approximate nearest neighbors (𝑘-ANN) of 𝑞, i.e., the 𝑘-ANN
are located within a small-radius ball centered at 𝑞.

In real-world machine learning applications [9, 19, 26, 38, 43, 53],
multi-reference vectors are often required in a query to consider
distances from target vectors to all reference vectors. For example,
vectors of embeddings can be used in digital curation to identify
overlaps in different styles of painting [26]. Specifically, curating a
gallery with two painting styles requires identifying paintings that
bridge the stylistic gap for a smoother transition by placing them
between the two. Essentially, here, the goal is to find paintings that
are similar to both given styles. Another scenario where finding
objects similar to all query objects is when dealing with perturbed
versions of an object as query vectors. It can locate the original
object within the dataset by finding objects that are similar to all
query objects [38]. Furthermore, there is another requirement in
the applications: finding objects that are similar to any of the query
objects. For instance, in a recommendation system, it supports
increasing the items as a reference to avoid over-recommending
homogeneous items [43]. Here, finding objects similar to any of the
query objects can offer a wider array of choices during searches.

Therefore, to enhance 𝑘-ANN search beyond a single-reference
vector, we propose multi-reference vector search in terms of finding
objects similar to all/any of the query objects. Formally, given a
query 𝑞 = [𝑞1, · · · , 𝑞𝑚] with𝑚 query vectors 𝑞𝑖 ∈ R𝑑 and a dataset
𝐷 ⊂ R𝑑 , all-𝑘 ANN search aims to find vectors in 𝐷 similar to all
query vectors, i.e., within the intersection of balls with a small radius
centered at the𝑚 query vectors. Conversely, any-𝑘 ANN searches
aim to find vectors in𝐷 similar to any of the given query vectors, i.e.,
within the union of balls with a small radius centered at the𝑚 query
vectors. To illustrate the concepts more vividly, as depicted in Fig. 1,
we conduct case studies using Recipe dataset [30, 36], in which

https://orcid.org/0000-0003-4535-8359
https://orcid.org/0009-0004-4358-1957
https://orcid.org/0009-0004-1210-4672
https://orcid.org/0000-0002-9738-827X
https://orcid.org/0000-0002-3743-5249
https://doi.org/10.1145/3774904.3792208
https://github.com/Xiejiadong/Multi-Vector-Queries
https://github.com/Xiejiadong/Multi-Vector-Queries
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3774904.3792208

WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates Jiadong Xie, Jeffrey Liang, Siyi Teng, Jeffrey Xu Yu, and Yingfan Liu

Input
Im

ag
e

In
gr

ed
ie

nt
s

Output: All 𝟐-NN Output: Any 𝟐-NN

1. 1/4 Daikon radish
……
3. Boiled eggs
……

1. 500 grams Pork belly block
……
3. 5 pieces Ginger
……
10. 1 Daikon radish

1. 400 grams Pork belly
2. 4 Boiled eggs
3. 15 cm long piece Daikon
radish
……

1. 500 grams to 1 kg Pork
belly block
2. 4 or more Eggs
3. 1 piece Ginger
……

1. 1 kg Pork belly block
……
3. 2/3 Daikon radish
……

……
3. 5 Boiled eggs
……

Im
ag

e

1. 2 pounds ground pork
......
3. 1/2 red onion, chopped
4. 1/2 green or red bell pepper
……

1. 6 cups strong brewed coffee
……
3. 3 cups skim milk
……

1. 9 cup strong brewed coffee
……
5. 2 pork tenderloin, trimmed
……

1. 1 cup chopped onion
2. 2 red bell pepper, chopped
......
9. 1 cup strong brewed coffee
......

1. 2 pounds ground pork
……
3. 1/2 green or red bell pepper,
chopped
……

1. 1 cup skim milk
……
3. 12 cups strong brewed
coffee

Figure 1: Case Studies of All/Any-2 NN on Recipe Dataset

vectors are embeddings generated from an encoder for each recipe
modality (ingredients, instructions, and images). Two recipes from
the dataset serve as references, with the objective being to identify
recipes in the dataset that are similar to all or any of the reference
vectors. In the first example, both input recipes are dishes featuring
eggs and pork. The all-2 NN results comprise most ingredients from
both recipes, whereas the any-2 NN results resemble at least one
of the input recipes, and all retrieval results are similar types of
dish. In the second case, we input two vastly different recipes: a
hamburger and a coffee. The all-2 NN retrieved from the dataset
seems to differ from the input recipes, a barbecue and a soup, but
ingredients reveal overlaps with both inputs. Conversely, the any-2
NN results are close to one of the input recipes. While the input
query vectors may appear distant from each other, the all/any-𝑘
ANN queries have the potential to reveal relationships between the
vectors in the input.

In the literature, numerous approaches have studied ANN search
over multi-attribute data by representing each attribute of an item
as a separate vector and then amalgamating these vectors into a sin-
gle reference vector for search [8, 19, 41, 46, 47, 51–54]. To achieve
high efficiency without constructing additional indexes for search,
these approaches typically avoid performing ANN search directly
on the entire combined vector of a query. Instead, they partition the
query’s reference vector back into its attribute-specific components,
conduct individual 𝑘′-ANN searches for each component, and fi-
nally merge the partial results to obtain the overall 𝑘-ANN. Inspired
by these approaches, we aim to adapt their methods to our problem.
Specifically, we initially acquire the 𝑘′-ANN R𝑖 for every vector
𝑞𝑖 ∈ 𝑞. Next, we consider selecting the top-𝑘 vectors from

⋃𝑚
𝑖=1 R𝑖

as the final all/any-𝑘 ANN. However, a notable issue of this method
lies in determining the optimal value of 𝑘′ for each query vector to
find all/any-𝑘 ANN. For all-𝑘 ANN search, setting a small value of
𝑘′ can lead to suboptimal final results. This is because all-1 NN may
not be proximate to any of the query vectors, e.g., it may reside in
a region at the centroid of the query vectors. Conversely, setting
a large value of 𝑘′ to each query vector will compromise search

efficiency. For any-𝑘 ANN search, the value of 𝑘′ required for each
vector is typically smaller than or equal to 𝑘 and varies in different
query vectors. But without prior knowledge, it is difficult to set the
optimal 𝑘′ for each vector to obtain the final any-𝑘 ANN search,
and the suboptimal choices of 𝑘′ can hamper search efficiency by
traversing the examination of unnecessary vectors in any-𝑘 ANN
search. In our problem of all/any-𝑘 ANN search, the vectors in the
query are located in the same vector representation space. This
enables us to consider introducing a search algorithm where the
search is concurrently guided under all query vectors to identify
the all/any-𝑘 ANN results, rather than conducting 𝑘′-ANN searches
separately on each vector and then merging the results.

The main contributions of this work are summarized below. ➊
We introduce two distance metrics for evaluating the ranking of
each vector within the dataset for both all and any-𝑘 NN. Next,
we prove that these two distance metrics are applicable to be used
in the search within the current graph index designed for 𝑘-ANN
search. This leads us to propose search algorithms for all and any-
𝑘 ANN, where the search can be simultaneously guided by all
query vectors using the proposed distance metrics. ➋ We further
decouple the two steps in our proposed search algorithm, i.e., the
algorithm first approaches the target region and then gradually
moves away from it to complete the search process. For all-𝑘 ANN
search, we present a novel approach involving first calculating a
vector, then using it as the query vector for 1-ANN search to reach
the target region. This can reduce the time required for the first
step by reducing the distance computation time. For any-𝑘 ANN
search, the target region may not be continuous in space. Hence, we
propose to perform a 1-ANN search of each query vector in the first
step to identify all target regions for enhancing the effectiveness.
While the second step of our algorithms remains unchanged, it
starts the search using the vectors obtained from the first step. ➌
We conduct extensive experiments using datasets of real-world
applications, which validate that our approaches are effective and
efficient over existing approaches.

Breaking the Single-Reference-Vector Barrier in Approximate Nearest Neighbor Search WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates

𝑢!
𝑞"

𝑢"

𝑢#𝑞$
𝑢%

𝑢$ 𝑞!

𝑢&

𝑢'

(a) All-𝑘 NN

𝑢!
𝑞"

𝑢"

𝑢#
𝑢$

𝑢%

𝑢&
𝑢'

𝑞!

𝑞#

(b) Any-𝑘 NN

Figure 2: An Example of All/Any-𝑘 NN

𝑞!
𝑢!

𝑢"𝑞#

𝑢# 𝑞$

𝑢%

𝑢&
𝑣̅

Figure 3: Illustra-
tion of MEB

2 Preliminaries
Let 𝐷 ⊂ R𝑑 be a high-dimensional dataset consisting of 𝑛 𝑑-
dimensional vectors. We denote the L2 norm (i.e., Euclidean dis-
tance) between two vectors 𝑢, 𝑣 ∈ R𝑑 as 𝛿 (𝑢, 𝑣). For a given query
vector 𝑞, the 𝑘-nearest neighbor (𝑘-NN) search aims to find the 𝑘
vectors in 𝐷 with the minimum distances from 𝑞. Alternatively, we
can define 𝑘-NN search by considering a ball centered at the query
vector. That is, 𝑘-NN search obtains the 𝑘 nearest neighbors R by
finding a ball 𝐵(𝑞, 𝑟★) centered at the query 𝑞 with the smallest
radius 𝑟★ that contains 𝑘 vectors in the dataset 𝐷 . Here, 𝑟★ is also
the 𝑘-th smallest distance between a vector in 𝐷 and query vector
𝑞. Formally, we define it as follows.

Definition 2.1:[𝑘-NN] Given a dataset 𝐷 and a query vector 𝑞,
the set of 𝑘-NN of 𝑞 is R =

{
𝑢 ∈ 𝐷 | 𝛿 (𝑢, 𝑞) ≤ 𝑟★

}
, where 𝑟★ =

arg min𝑟 𝑟 s.t. | {𝑢 ∈ 𝐷 | 𝛿 (𝑢, 𝑞) ≤ 𝑟 } | ≥ 𝑘 .

With multi-vector query 𝑞 = [𝑞1, · · · , 𝑞𝑚], where 𝑞𝑖 ∈ R𝑑 for
𝑖 ∈ {1, ..,𝑚}, the definition of 𝑘-NN can be expanded by associating
𝑚 balls 𝐵𝑖 (𝑞𝑖 , 𝑟) centered at each query vector 𝑞𝑖 . We consider two
types of searches onmulti-vector queries: all and any-𝑘 NN queries,
focusing on the intersection and union of𝑚 balls, respectively. For
example, as depicted in Fig. 2, dataset𝐷 contains 7 vectors𝑢1, . . . , 𝑢7,
and the query 𝑞 consists of three vectors 𝑞1, 𝑞2, and 𝑞3. The all-2
NN of 𝑞 are 𝑢1 and 𝑢4, illustrated in Fig. 2(a), located within the
intersection of the balls centered at 𝑞1, 𝑞2, and 𝑞3 with the smallest
radius. On the other hand, the any-4 NN of 𝑞 are 𝑢2, 𝑢3, 𝑢4, and 𝑢5,
as shown in Fig. 2(b), within the union of balls centered at 𝑞1, 𝑞2,
and 𝑞3 with the smallest radius. It is important to note that 𝑢1 is
excluded from the union of the three balls since it lies at around
the centroid of the balls, which is not included in any ball.

Formally, we present the definitions of all/any-𝑘 NN as follows.

Definition 2.2:[All-𝑘 NN] Given a dataset 𝐷 and a query of 𝑚
vectors 𝑞 = [𝑞1, · · · , 𝑞𝑚], the set of all-𝑘 NN of 𝑞 is

R∀
𝑟★

=

𝑚⋂
𝑖=1

{
𝑢 ∈ 𝐷 | 𝛿 (𝑢, 𝑞𝑖) ≤ 𝑟★

}
,

where 𝑟★ = arg min𝑟 𝑟 s.t.
��⋂𝑚

𝑖=1 {𝑢 ∈ 𝐷 | 𝛿 (𝑢, 𝑞𝑖) ≤ 𝑟 }
�� ≥ 𝑘 .

Definition 2.3:[Any-𝑘 NN] Given a dataset 𝐷 and a query of𝑚
vectors 𝑞 = [𝑞1, · · · , 𝑞𝑚], the set of any-𝑘 NN of 𝑞 is

R∃
𝑟★

=

𝑚⋃
𝑖=1

{
𝑢 ∈ 𝐷 | 𝛿 (𝑢, 𝑞𝑖) ≤ 𝑟★

}
,

where 𝑟★ = arg min𝑟 𝑟 s.t.
��⋃𝑚

𝑖=1 {𝑢 ∈ 𝐷 | 𝛿 (𝑢, 𝑞𝑖) ≤ 𝑟 }
�� ≥ 𝑘 .

As the exact 𝑘-NN search is time-consuming [25, 27, 40, 42] due
to the curse of dimensionality [20], in this paper, we study the
all/any-𝑘 approximate nearest neighbor (𝑘 ANN) search, and

its quality is measured by the recall. Here, let 𝐷𝐺 be the ground-
truth vector set, and 𝐷𝑅 be the set found by an all/any-𝑘 ANN
search algorithm, 𝑟𝑒𝑐𝑎𝑙𝑙@𝑘 is defined as |𝐷𝐺 ∩ 𝐷𝑅 |/𝑘 .

The state-of-the-art approaches for 𝑘-ANN search are to con-
struct a proximity graph (PG) [13, 14, 27, 29, 34, 35, 45, 48, 49].
Here, a proximity graph is a directed graph 𝐺 = (𝑉 , 𝐸), where
𝑣𝑖 ∈ 𝑉 represents a unique vector 𝑣𝑖 ∈ 𝐷 , and an edge, (𝑣𝑖 , 𝑣 𝑗), in
𝐸 represents that two vectors are close to each other based on the
distance function 𝛿 (𝑣𝑖 , 𝑣 𝑗), or precisely 𝑣 𝑗 is one of the 𝑘-NN of 𝑣𝑖 .
The search algorithm on the proximity graph, named beam search,
starts its exploration from a designated entry node or randomly
chosen nodes. It maintains a queue of 𝑤 nodes with the current
smallest distance to the query vector, where𝑤 is a given parameter,
called beam width. Through iterative explorations, i.e., it explores
the neighbors of the nodes in the queue each time, it seeks nodes
closer to 𝑞. The algorithm terminates when no closer neighbors to
𝑞 are found among the nodes in the queue.

3 Baseline Approaches and Limitations
Many approaches focus on ANN search for multiple attributes by
amalgamating vectors from different attributes of an item into a
single-reference vector for search [19, 41, 52–54]. Their approach
involves dividing the single-reference vector in a query, then exe-
cuting separate 𝑘-ANN queries for each divided vector and com-
bining their results to obtain the final results. We consider adapt-
ing their methods to our problem as a baseline algorithm. Specif-
ically, let R𝑖 denote the 𝑘-ANN result of query vector 𝑞𝑖 , it deter-
mines the 𝑟★ among the R̄ =

⋃𝑚
𝑖=1 R𝑖 , i.e., for all-𝑘 ANN, 𝑟★ is the

smallest value such that
��{𝑢 ∈ R̄ |∀𝑖 ∈ {1, · · · ,𝑚}, 𝛿 (𝑢, 𝑞𝑖) ≤ 𝑟★}

�� ≥
𝑘 ; and for any-𝑘 ANN, 𝑟★ is the smallest value such that��{𝑢 ∈ R̄ |∃𝑖 ∈ {1, · · · ,𝑚}, 𝛿 (𝑢, 𝑞𝑖) ≤ 𝑟★}

�� ≥ 𝑘 .
Although it can be proved that it guarantees finding the any-𝑘

NN of the query when the 𝑘-ANN retrieval is exact for each query
𝑞𝑖 (details are shown in Appendix), it may miss true results for the
all-𝑘 NN query. This is because some of the all-𝑘 NN might not be
included in 𝑘-NN of any query vector 𝑞𝑖 . For example, consider the
case illustrated in Fig. 2, where a query contains three vectors 𝑞1, 𝑞2,
and 𝑞3. When the query is an all-2 ANN search, it retrieves {𝑢2, 𝑢3},
{𝑢5, 𝑢6}, and {𝑢4, 𝑢6} as the 2-NN for 𝑞1, 𝑞2, and 𝑞3 respectively, as
these are their respective 2-NN vectors. In this case, the all-1 NN,
𝑢1, of the query 𝑞 = [𝑞1, 𝑞2, 𝑞3] will be missed in the final output.

To address this issue, we further utilize the iterative merging
method fromMilvus [41]. That is, the 𝑘′-ANN search performs with
an adaptive 𝑘′ for each query vector 𝑞𝑖 , and starting with 𝑘′ = 𝑘 .
At each time, the algorithm doubles 𝑘′ iteratively until the vectors
in the final result set are included in all the 𝑘′-ANN of every query
vector 𝑞𝑖 , i.e., if R̄∀ = {𝑢 ∈ R̄ |∀𝑖 ∈ {1, · · · ,𝑚}, 𝛿 (𝑢, 𝑞𝑖) ≤ 𝑟★} with
the smallest 𝑟★ is the final result set, then the algorithm terminates
when∀𝑖 ∈ {1, · · · ,𝑚}, R̄∀ ⊆ R𝑖 . For example, recalling the example
shown in Fig. 2, 𝑘′ = 𝑘 = 2 initially, and it retrieves {𝑢2, 𝑢3},
{𝑢5, 𝑢6}, and {𝑢4, 𝑢6} as the 2-ANN for 𝑞1, 𝑞2, and 𝑞3 respectively,
and determine an smallest 𝑟★ such that final results are 𝑢6 and 𝑢4.
However, given that neither of them is included in all 2-ANN sets of
each query vector, the algorithm doubles 𝑘′ to 4. Next, it retrieves
{𝑢2, 𝑢3, 𝑢1, 𝑢4}, {𝑢5, 𝑢6, 𝑢1, 𝑢4}, and {𝑢4, 𝑢6, 𝑢1, 𝑢7} as the 4-ANN for
𝑞1, 𝑞2, and 𝑞3 respectively, culminating in the final results {𝑢1, 𝑢4}.

WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates Jiadong Xie, Jeffrey Liang, Siyi Teng, Jeffrey Xu Yu, and Yingfan Liu

Hence, the algorithm finds {𝑢1, 𝑢4} as the all-2 ANN, as both of
them are in all 4-ANN sets of each query vector. It can be proved
that, the final result set R̄∀ is guaranteed to be the all-𝑘 NN of
query vectors 𝑞 = [𝑞1, · · · , 𝑞𝑚], when the 𝑘′-ANN retrieval is exact
for each query 𝑞𝑖 , the details are shown in Appendix.
The Optimal 𝑘′ Setting Issues: It is still inefficient in practice
for both all and any-𝑘 ANN search. ➊ Although the algorithm
ensures accuracy in retrieving results for all-𝑘 ANN, it tends to
be inefficient in practice. It is because, for optimal performance,
the iterative merging approach must initially establish an optimal
value, 𝑘′, to obviate the need for iterative doubling. Otherwise, the
iterative doubling of 𝑘′ necessitates repeated 𝑘′-ANN searches on
each query vector, leading to decreased efficiency. However, deter-
mining the ideal 𝑘′ value before the search operation requires prior
knowledge, making it difficult to determine the optimal value of 𝑘′.
➋ Conducting a separate 𝑘-ANN search on each query vector for
any-𝑘 ANN may also lose some efficiency in practice. For example,
in Fig. 2, the any-4 NN of query 𝑞 = [𝑞1, 𝑞2, 𝑞3] are 𝑢2, 𝑢3, 𝑢4, 𝑢5, i.e.,
2-NN of 𝑞1, 1-NN of 𝑞2 and 𝑞3. Thus, it may be possible to identify
a 𝑘′ < 𝑘 such that performing 𝑘′-ANN searches for each query
vector is adequate for acquiring the any-𝑘 ANN. Even more, the
optimal 𝑘′ value may vary for distinct query vectors. Therefore, it
is inefficient to retrieve the complete 𝑘-ANN for every query vector
in order to obtain the final results of any-𝑘 ANN search.

4 Distance Metrics and Search Algorithms
To address the optimal 𝑘′ setting issue presented in the previous
section for all/any-𝑘 ANN search, we aim to eliminate conducting
individual 𝑘′-ANN searches for each query vector. Instead, we
consider performing a global search for all and any-𝑘 ANN.

To achieve this, we introduce two distance metrics to assess
the ranking of each vector among those in the dataset for all/any-
𝑘 NN, and prove that they are suitable for search based on the
proximity graphs. This allows us to employ the beam search on
graph indexes designed for 𝑘-ANN search by simply switching the
distance metrics for executing all and any-𝑘 ANN searches.
Distance Metrics of Vectors in Dataset: Reducing the value of
𝑟★ leads to a reduced 𝑘 for all/any-𝑘 NN. In other words, increasing
𝑟★ enlarges the size of balls centered at each query vector, thereby
expanding their intersections and unions, i.e., enlarging the size of
R∀
𝑟★

and R∃
𝑟★
. Hence, the ranking of each vector in all/any-𝑘 NN

is determined by their appearance order in the intersections and
unions of balls when the value of 𝑟★ increases from 0. Thus, we
select the minimum value of 𝑟★ that includes each vector in R∀

𝑟★

or R∃
𝑟★

to determine its rank in all/any-𝑘 NN, i.e., a vector with a
smaller 𝑟★ value means it appears earlier and has a higher ranking.

This smallest value of 𝑟★ for a vector 𝑢, named all/any-radius
and denoted as ¤𝑟★(𝑢), equals to arg min𝑟 𝑟 s.t. 𝑢 ∈ R∀𝑟 for all-𝑘 NN
(or arg min𝑟 𝑟 s.t. 𝑢 ∈ R∃𝑟 for any-𝑘 NN). To calculate all/any-radius
for determining vectors’ rank, we rely on the following theorem.

Theorem 4.1: Given a dataset 𝐷 , for a vector 𝑢 ∈ 𝐷 , its all-radius
¤𝑟★(𝑢) equals to max𝑖∈{1,· · · ,𝑚} 𝛿 (𝑞𝑖 , 𝑢), and its any-radius ¤𝑟★(𝑢)
equals to min𝑖∈{1,· · · ,𝑚} 𝛿 (𝑞𝑖 , 𝑢).
Proof Sketch: For all-radius of 𝑢, let 𝑟 ′ = max𝑖∈{1,· · · ,𝑚} 𝛿 (𝑞𝑖 , 𝑢).
For all 𝑖 ∈ {1, · · · ,𝑚}, 𝛿 (𝑞𝑖 , 𝑢) ≤ 𝑟 ′, implying 𝑢 ∈ R∀

𝑟 ′ . As ¤𝑟
★(𝑢) =

arg min𝑟 𝑟 s.t. 𝑢 ∈ R∀𝑟 by definition, it follows that 𝑟 ′ ≥ ¤𝑟★(𝑢). Con-
versely, ¤𝑟★(𝑢) = arg min𝑟 𝑟 s.t.𝑢 ∈ R∀𝑟 , hence for all 𝑖 ∈ {1, · · · ,𝑚},
𝛿 (𝑞𝑖 , 𝑢) ≤ ¤𝑟★(𝑢), indicating ¤𝑟★(𝑢) ≥ max𝑖∈{1,· · · ,𝑚} 𝛿 (𝑞𝑖 , 𝑢). Thus,
the equality ¤𝑟★(𝑢) = max𝑖∈{1,· · · ,𝑚} 𝛿 (𝑞𝑖 , 𝑢) is upheld.

For any-radius of 𝑢, let 𝑟 ′ = min𝑖∈{1,· · · ,𝑚} 𝛿 (𝑞𝑖 , 𝑢). There exists
one 𝑖 ∈ {1, · · · ,𝑚}, 𝛿 (𝑞𝑖 , 𝑢) = 𝑟 ′, implying 𝑢 ∈ R∃

𝑟 ′ . As ¤𝑟
★(𝑢) =

arg min𝑟 𝑟 s.t. 𝑢 ∈ R∃𝑟 by definition, it follows that 𝑟 ′ ≥ ¤𝑟★(𝑢).
Conversely, ¤𝑟★(𝑢) = arg min𝑟 𝑟 s.t. 𝑢 ∈ R∃𝑟 , hence ∃𝑖 ∈ {1, · · · ,𝑚},
𝛿 (𝑞𝑖 , 𝑢) ≤ ¤𝑟★(𝑢), indicating ¤𝑟★(𝑢) ≥ min𝑖∈{1,· · · ,𝑚} 𝛿 (𝑞𝑖 , 𝑢). There-
fore, ¤𝑟★(𝑢) = min𝑖∈{1,· · · ,𝑚} 𝛿 (𝑞𝑖 , 𝑢) is upheld. □

Leveraging the above theorem, we can first compute 𝛿 (𝑞𝑖 , 𝑢)
for every query vector 𝑞𝑖 in the query 𝑞 in 𝑂 (𝑑) time, and then
aggregate them to calculate the all/any-radius. Therefore, for each
vector in the dataset, it needs a time complexity of 𝑂 (𝑚 · 𝑑) .

The beam search excels in performance on proximity graphs for
𝑘-ANN search due to the following two reasons [27, 34, 42, 48, 49,
52]. ➊ Since the Euclidean distances adhere to the triangle inequal-
ity, for a node 𝑢 and its neighbor 𝑣 in the proximity graph and a
query vector𝑞, we have 𝛿 (𝑞,𝑢)−𝛿 (𝑢, 𝑣) ≤ 𝛿 (𝑞, 𝑣) ≤ 𝛿 (𝑞,𝑢)+𝛿 (𝑢, 𝑣),
which implies that the neighbors of a node might be closer to the
query than the current node. Hence, we can iteratively explore the
neighbors to approach the region of the 𝑘-NN of the query vector.
➋ When a vector is one of the 𝑘-NN, the vectors represented by the
neighbors of its corresponding nodes in the proximity graph have
a high probability of also being 𝑘-NN. Hence, we can continuously
explore the 𝑘-NN of the query vector, once we enter the region of
the 𝑘-NN of the query vector, i.e., already finding at least one of
the 𝑘-NN of the query vector.

Therefore, as follows, we demonstrate that the all/any-radius also
exhibits these two properties, proving its suitability as a distance
metric in beam search to search on proximity graphs.

We first prove that the neighbors of a node in the proximity
graph have the potential to have a smaller all/any-radius compared
to the current node, which aids in iteratively navigating the search
towards the target region, i.e., the region contains all/any-𝑘 NN.

Theorem 4.2: For two vectors𝑢, 𝑣 ∈ R𝑑 , their all/any-radius satisfies
¤𝑟★(𝑣) − 𝛿 (𝑢, 𝑣) ≤ ¤𝑟★(𝑢) ≤ ¤𝑟★(𝑣) + 𝛿 (𝑢, 𝑣).

The proof is omitted here, which is included in Appendix.
According to Theorem 4.2, utilizing the all/any-radius as the

distancemetric holds the same potential as using Euclidean distance,
suggesting that the neighbors of a node in the proximity graph
might be closer to the query. Moreover, based on Theorem 4.2, we
have

��¤𝑟★(𝑢) − ¤𝑟★(𝑣)�� ≤ 𝛿 (𝑢, 𝑣) for any two vectors 𝑢, 𝑣 ∈ 𝐷 . Thus,
if node 𝑢 is among the all/any 𝑘-NN of a query, a neighbor 𝑣 of 𝑢
in the proximity graph has a higher probability of also being one
of the all/any 𝑘-NN compared to other nodes in the dataset. It is
because the neighbors of node 𝑢 are the closest vectors in dataset.

Thus, we have shown that the all/any-radius serves as a suit-
able distance metric in the beam search conducted on proximity
graphs. Building on this insight, we introduce our search algorithm,
named RadiusSearch. Similar to beam search, it maintains a queue
containing𝑤 nodes. Through iterative exploration, it explores the
neighbors of nodes in the queue to identify those with a smaller
value of all/any-radius. The details of our search algorithm are
shown in Algorithm 1. Initially, it selects a node 𝑢 in 𝐺 and inserts

Breaking the Single-Reference-Vector Barrier in Approximate Nearest Neighbor Search WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates

Algorithm 1: RadiusSearch (𝐺,𝑞, 𝑘,𝑤)
Input : a PG𝐺 , a query 𝑞 = [𝑞1, 𝑞2, · · · , 𝑞𝑚], 𝑘 for top-𝑘 , and

beam width 𝑤

Output : all/any-𝑘 ANN of 𝑞
Select a node 𝑢 ∈ 𝐺 to insert into the set 𝑆 ;1

while there exists an unvisited node in 𝑆 do2

𝑢 ← the unvisited node with smallest value of ¤𝑟★ (·) of 𝑞 in 𝑆 ;3

Mark 𝑢 visited;4

for each unvisited 𝑣 of (𝑢, 𝑣) ∈ 𝐺 that is not in 𝑆 do5

Insert 𝑣 into 𝑆 ;6

while |𝑆 | > 𝑤 do7

Remove the node with the largest value of ¤𝑟★ (·) of 𝑞 from 𝑆 ;8

return the top-𝑘 nodes with smallest value of ¤𝑟★ (·) of 𝑞 in 𝑆 ;9

it into set 𝑆 , which is unvisited (line 1). The node𝑢 is the entry point
if specified by the given proximity graph or is randomly selected
from the vertex set. In the while-loop (lines 2-8), if there exists an
unvisited node in 𝑆 , the search tries to find nodes with a smaller
value of all/any-radius as follows. First, it selects the unvisited node
with the smallest distance, 𝑢, to the query 𝑞 from 𝑆 , and marks it
visited (lines 3-4). Second, it adds every node, 𝑣 , into 𝑆 if there is a
directed edge from 𝑢 to 𝑣 , and 𝑣 is not in 𝑆 , which implies that 𝑣 is
unvisited yet (lines 5-6). Third, it deletes the node with the largest
value of all/any-radius to 𝑞 from 𝑆 if |𝑆 | (the size of 𝑆) is greater than
𝑤 (lines 7-8). Since our search algorithm, RadiusSearch, extends
beam search by modifying the distance measure, indicating they
have the same time and space complexity.

5 Two-Stage Searches for All/Any-𝑘 ANN
In this section, we present more efficient and effective approaches
for the all and any-𝑘 ANN search, respectively.

As illustrated in Fig. 4, at a high level, RadiusSearch for all/any-𝑘
ANN search comprises two stages. Initially, the search approaches
the target vector region, i.e., the region of all/any-1 NN, despite
significant oscillations in vector distances. Next, the search stabi-
lizes and gradually moves away from the target vector region in an
approximate manner to search the all/any-𝑘 ANN. Building upon
this observation, we enhance our algorithms for all and any-𝑘 ANN
searches by decoupling two steps.

We refine our algorithm presented in the previous section as
follows.➊ Regarding any-𝑘 ANN search, we identify that the region
of its𝑘-NNmay not be a continuous space, limiting the effectiveness
of RadiusSearch in achieving high recall. Thus, we propose a two-
step algorithm for any-𝑘 ANN search: initially approaching the
separate non-continuous regions of the any-𝑘 NN, followed by
leveraging RadiusSearch to retrieve the results. ➋ For the two-
step algorithm of the all-𝑘 ANN search, we optimize its first step
to approach the all-1 NN. By computing a vector near the all-1
NN first and conducting a traditional 1-ANN search to reach the
target region initially, we reduce the distance computations from
𝑂 (𝑚 ·𝑑) to𝑂 (𝑑) in the first step. Next, in a similar way, we employ
RadiusSearch to acquire the results in the second step.

5.1 Search Algorithm for Any-𝑘 ANN Search
First, we present an issue in the search process of RadiusSearch.

0 200 400 600 800 1000
Steps

200
300
400
500
600
700

Al
l-r

ad
iu

s r

Trend line

(a) All-10 ANN

0 100 200 300 400 500
Steps

100

200

300

400

500

An
y-

ra
di

us
 r

Trend line

(b) Any-10 ANN

Figure 4: RadiusSearch Search Process When𝑤 = 100 on SIFT

Non-continuous Space Issue of Any-𝑘 NN: The region of the
any-𝑘 NN may be non-continuous, since some of the balls centered
at query vectors may not intersect with other balls. This makes the
any-𝑘 NN might not exist within a continuous space alongside the
any-1 NN. For instance, if the any-2 NN of query 𝑞 = [𝑞1, 𝑞2] are
𝑢1 and 𝑢2 with 𝛿 (𝑞1, 𝑢1) = 𝛿 (𝑞2, 𝑢2) = 0, a substantial Euclidean
distance separates vectors𝑢1 and𝑢2 when 𝛿 (𝑞1, 𝑞2) is large, disrupt-
ing the continuity of the space. However, similar to the principles
RadiusSearch operates on all-𝑘 ANN search, when executing a
RadiusSearch for any-𝑘 ANN search, it initially navigates towards
the region of the any-1 NN. Since 𝑘-NN might not exist within a
continuous space alongside the any-1 NN, RadiusSearch encoun-
ters an issue in searching for any-𝑘 ANN after initially approaching
the region of the any-1 NN. It is also evident in the results illustrated
in Fig. 4(b). At step 6, RadiusSearch has already reached the any-1
NN. However, there exists another region of vectors with a small
value of any-radius value that is not in proximity to the any-1 NN,
and it will only be discovered around step 300.

Thus, despite RadiusSearch addressing the optimal 𝑘′ setting
issue, it still has suboptimal performance due to the discontinuity
in the target region of any-𝑘 NN. This is also validated in Exp. 2
(Section 6), where the search performance of RadiusSearch may be
inferior to existing approaches, e.g.,Milvus.

To address this issue, we introduce a two-step search algorithm.
RadiusSearch+ of Any-𝑘 ANN Search: In the first step, instead of
directly employing RadiusSearch to approach the region of any-1
NN, we opt to conduct separate 1-ANN searches for each query
vector to approach the distinct𝑚 regions which may not be in a
continuous space, i.e., it involves performing a beam search to seek
1-ANN for each query vector individually. Next, in the second stage,
we start RadiusSearch by initially inserting the𝑚 1-ANN of each
query vector into the set 𝑆 (line 1 in Algorithm 1). By executing this
strategy, RadiusSearch avoids approaching only one of the regions
in the first step, and starting RadiusSearch at these non-continuous
regions enables an easier identification of any-𝑘 ANN.

5.2 Search Algorithm for All-𝑘 ANN Search
To propose the two-step algorithm for all-𝑘 ANN search, it is nec-
essary to initially compute a vector in R𝑑 that is proximate to the
all-1 NN. Note that, in Section 2, the example (Fig. 2(a)) shows that
the all-1 NN is close to the centroid of all query vectors. However,
this scenario is not universally applicable. For instance, in a two-
dimensional space where 𝑞1 = (0, 0), 𝑞2 = · · · = 𝑞10 = (4, 4), the
centroid is very close to (4, 4), yet the all-1 NN are around (2, 2).

Therefore, a new method to locate a vector in R𝑑 that is close to
the all-1 NN is necessary.

WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates Jiadong Xie, Jeffrey Liang, Siyi Teng, Jeffrey Xu Yu, and Yingfan Liu

A Vector Near the All-1 NN: Assuming the dataset contains ar-
bitrary vectors in R𝑑 . As the value of 𝑟★ increases, initially, R∀

𝑟★

contains no data points because the balls
{
𝑢 ∈ 𝐷 | 𝛿 (𝑢, 𝑞𝑖) ≤ 𝑟★

}
have no intersections. The first data point exists in R∀

𝑟★
as 𝑟★ in-

creases, when the boundaries of the balls
{
𝑢 ∈ 𝐷 | 𝛿 (𝑢, 𝑞𝑖) ≤ 𝑟★

}
intersect. This first data point, being the all-1 NN, due to the dataset
containing arbitrary vectors in R𝑑 , is referred to as the optimal
intersection vector 𝑣 . Hence, 𝑣 is the vector in R𝑑 that has the
smallest value of all-radius. Indeed, the real dataset contains only a
finite set of vectors (not arbitrary vectors in R𝑑), hence, the all-1
NN of the dataset may only appear when 𝑟★ continues to increase.
According to the insights from Theorem 4.2, a vector 𝑢 with a small
Euclidean distance to 𝑣 may exhibit a similar all/any-radius value
as 𝑣 . Thus, the all-1 NN of the dataset 𝐷 will be near the optimal
intersection vector 𝑣 , i.e., 𝑣 is a vector near the all-1 NN.

Theoretically, we can prove that the optimal intersection vector
𝑣 corresponds to the center of the minimum enclosing ball (MEB)
of all the query vectors. The MEB 𝐵 of a set of vectors 𝑆 ⊆ R𝑑 is a
𝑑-dimensional ball with minimized radius that contains 𝑆 within it.

Theorem 5.1: Given a query 𝑞 = [𝑞1, · · · , 𝑞𝑚], the optimal inter-
section vector 𝑣 of 𝑞 is the center of the MEB of vectors {𝑞1, · · · , 𝑞𝑚}.

Proof Sketch: Since 𝑣 is the first point found in the intersection of
all balls 𝐵𝑖 (𝑞𝑖 , 𝑟★), there exists a ball 𝐵𝑘 (𝑞𝑘 , 𝑟★) corresponding to a
query 𝑞𝑘 such that 𝑣 is exactly on the boundary of the ball and the
distance from the ball center to 𝑣 is the largest, i.e., 𝛿 (𝑣, 𝑞𝑘) = 𝑟★.
As the distance from the ball center to 𝑣 is the largest and 𝑣 is in the
intersection of all balls, the ball 𝐵(𝑣, 𝑟★) centered at 𝑣 contains all
other query vector 𝑞𝑖 and is thus an enclosing ball. Next, assuming
that the ball 𝐵(𝑣, 𝑟★) is not the minimum enclosing ball, there must
exist a ball 𝐵(𝑐, 𝑟) centered at 𝑐 , such that 𝑟 < 𝑟★, encompassing all
query vectors. Hence, 𝛿 (𝑐, 𝑞𝑖) ≤ 𝑟 , meaning that 𝑐 will appear in the
intersection of all balls 𝐵𝑖 (𝑞𝑖 , 𝑟), which contradicts the optimality
of 𝑣 as the intersecting vector with 𝑟★. □

For example, as shown in Fig. 3, 𝑣 in the center of MEB of vector
set 𝑆 = {𝑞1, 𝑞2, 𝑞3}, which is the point that has the minimum all-
radius. Consider the vectors shown in Fig. 2(a), the all-2 NN 𝑢1 and
𝑢4 are near 𝑣 . Therefore, we can utilize the MEB center of query
vectors 𝑐 as a vector in the target vector region for search in the
first step. Hence, in the first stage of the all-𝑘 ANN search, we
execute a beam search by inputting the query vector as 𝑐 , and use
the Euclidean distance as the distance metric.
Issue of the Existing Approaches for Calculating MEB: There
have been many approaches for determining the center of MEB [10,
12, 24, 50], and the state-of-the-art approaches can achieve a linear
time complexity in the number of vector queries. However, these
methods typically treat the dimension as a constant or assume
𝑑 ≪ 𝑚, rendering them unsuitable for ours. In our scenario, the
dimension 𝑑 is consistently much greater than the number of vec-
tors 𝑚 since we are dealing with high-dimensional vectors, and
the user-defined query vectors are not excessively numerous. Thus,
we need to consider dimension 𝑑 in terms of time complexity for
proposing the algorithm of MEB.
Our Method for Calculating the Center of MEB: Given that

𝑚 < 𝑑 , we find that the query vectors are all positioned on the
boundary of the MEB [12]. Hence, we first formulate the problem of
determining the MEB’s center according to the following theorem.

Theorem 5.2: Given a query 𝑞 = [𝑞1, · · · , 𝑞𝑚], the MEB of vectors
𝑞1, · · · , 𝑞𝑚 is the ball 𝐵(𝑐, 𝑟), where 𝑐 = arg min𝑐∈R𝑑 𝑐⊤ (𝑐 − 2𝑞1) s.t.
∀𝑞𝑖 ∈ 𝑞, 2(𝑞1 − 𝑞𝑖)⊤𝑐 = ∥𝑞1∥2 − ∥𝑞𝑖 ∥2 and 𝑟 = 𝛿 (𝑞1, 𝑐). Here, ∥𝑢∥
denotes the L2 norm of a vector 𝑢.

Proof Sketch: According to the definition of MEB, and since all 𝑞𝑖
are on the boundary of MEB, we have the ball 𝐵(𝑐, 𝑟) is MEB, when
𝑟 and 𝑐 satisfy that 𝑐 = arg min𝑐∈R𝑑 𝑟 s.t. ∀𝑞𝑖 , 𝑞 𝑗 ∈ 𝑞, 𝛿 (𝑐, 𝑞𝑖) =
𝛿 (𝑐, 𝑞 𝑗) and 𝑟 = 𝛿 (𝑞1, 𝑐). Since ∀𝑞𝑖 , 𝑞 𝑗 ∈ 𝑞, 𝛿 (𝑐, 𝑞𝑖) = 𝛿 (𝑐, 𝑞 𝑗) ⇔
∀𝑞𝑖 ∈ 𝑞, 𝛿 (𝑐, 𝑞1) = 𝛿 (𝑐, 𝑞𝑖); 𝛿 (𝑐, 𝑞1) = 𝛿 (𝑐, 𝑞𝑖) ⇔ ∥𝑞𝑖 ∥2 + ∥𝑐 ∥2 −
2𝑐⊤𝑞𝑖 = ∥𝑞1∥2 + ∥𝑐 ∥2 − 2𝑐⊤𝑞1 ⇔ 2(𝑞1 − 𝑞𝑖)⊤𝑐 = ∥𝑞1∥2 − ∥𝑞𝑖 ∥2;
∥𝑐 ∥2 = 𝑐⊤𝑐; and ∥𝑞1∥2 is given, we have 𝑐 = arg min𝑐∈R𝑑 𝑐⊤ (𝑐 −
2𝑞1) s.t. ∀𝑞𝑖 ∈ 𝑞, 2(𝑞1 − 𝑞𝑖)⊤𝑐 = ∥𝑞1∥2 − ∥𝑞𝑖 ∥2. □

Note that ∀𝑞𝑖 ∈ 𝑞, 2(𝑞1 − 𝑞𝑖)⊤𝑐 = ∥𝑞1∥2 − ∥𝑞𝑖 ∥2 are linear con-
straints, and 𝑐⊤ (𝑐 − 2𝑞1) is convex. Hence, the formalized problem
is a convex quadratic program with linear equality constraints. We
can utilize the interior-point method with optimization via Schur
complement to effectively address this problem [44], with a resolu-
tion time complexity of 𝑂 (

√
𝑚 · (𝑑3 +𝑚3)).

Since𝑚 < 𝑑 , we first calculate the affine hull of𝑚 vectors within
R𝑑 , possessing a maximum dimension of𝑚 − 1 [4]. Next, we utilize
an orthonormal basis for the coordinate system of the affine hull
to project these 𝑚 vectors onto the affine hull. As orthonormal
bases are isometric, the original Euclidean distances between the
vectors are preserved [39]. Hence, our task reduces to finding the
center of the MEB within this affine hull. Therefore, the dimension
of the variable 𝑐 in the problem presented in Theorem 5.1 can be
reduced to at most𝑚 − 1, thereby reducing the time complexity of
solving the problem to𝑂 (𝑚3.5). Additionally, calculating the affine
hull of𝑚 vectors and projecting them onto the affine hull requires
𝑂 (𝑚2𝑑) time [4]. Thus, the overall time complexity of our MEB
center calculation method is 𝑂 (𝑚2𝑑 +𝑚3.5).
RadiusSearch+ for All-𝑘 ANN Search: In summary, our two-stage
algorithm for all-𝑘 ANN search, named RadiusSearch+, operates
as follows. Initially, it determines the optimal intersection vector
𝑣 by computing the MEB of the query vectors. Next, it employs
a beam search to find a traditional 1-ANN of 𝑣 , and uses the Eu-
clidean distance as the metric. Finally, the results are obtained by
RadiusSearch, which initiates from the results of the beam search,
i.e., by replacing line 1 of Algorithm 1 with the insertion of nodes
from the beam search results into 𝑆 .

6 Evaluation
In this section, we conduct extensive experiments on real-world
datasets and report our findings.
Datasets: We employ 5 real-world datasets with different num-
bers of dimensions/vectors, from diverse applications including
image (SIFT [1], GIST [1], Recipe [36]), audio (Msong [3]), and text
(Crawl [2]). The details of the datasets are included in Appendix.

We generate 1, 000 queries for each dataset for the evaluation,
and each query is assigned a set of 5 vectors by default (i.e.,𝑚 = 5).
To select vectors for each query, we begin by randomly selecting a
vector from the query dataset and finding its 10-NNwithin the same

Breaking the Single-Reference-Vector Barrier in Approximate Nearest Neighbor Search WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates

0.80 0.85 0.90 0.95 1.00
Recall@10

101

102

103

QP
S

Milvus Opt-Milvus VBASE Centroid RadiusSearch RadiusSearch+

0.80 0.85 0.90 0.95 1.00
Recall@10

100

101

102

103

QP
S

(a) Recipe

0.80 0.85 0.90 0.95 1.00
Recall@10

101

102

103

QP
S

(b) Msong

0.80 0.85 0.90 0.95 1.00
Recall@10

102

103

104

QP
S

(c) SIFT

0.80 0.85 0.90 0.95 1.00
Recall@10

101

102

103

QP
S

(d) GIST

0.80 0.85 0.90 0.95 1.00
Recall@10

102

103

104

QP
S

(e) Crawl

Figure 5: QPS v.s. Recall Curves for Comparing All-𝑘 ANN Search Performance (Exp. 1)

0.80 0.85 0.90 0.95 1.00
Recall@10

103

104

QP
S

Milvus VBASE RadiusSearch RadiusSearch+

0.80 0.85 0.90 0.95 1.00
Recall@10

101

102

103

QP
S

(a) Recipe

0.80 0.85 0.90 0.95 1.00
Recall@10

103

104

QP
S

(b) Msong

0.80 0.85 0.90 0.95 1.00
Recall@10

103

104

QP
S

(c) SIFT

0.80 0.85 0.90 0.95 1.00
Recall@10

102

103

QP
S

(d) GIST

0.80 0.85 0.90 0.95 1.00
Recall@10

103

104

QP
S

(e) Crawl

Figure 6: QPS v.s. Recall Curves for Comparing Any-𝑘 ANN Search Performance (Exp. 2)

query dataset. These 10-NN are distinct from the base dataset used
to construct the index since the query dataset is provided separately.
Next, the 5 vectors are randomly picked from this 10-NN set.
Algorithms: In the experiments, we evaluate our approaches
against two existing methods by modifying their techniques to
tackle our problem as baseline algorithms. (1)Milvus [41], discussed
in Section 3, performs𝑚 𝑘-ANN searches for each query vector in
the query and aggregates the results for any-𝑘 ANN. For all-𝑘 ANN,
it utilizes a parameter 𝑘′ that iteratively doubles when the results
are insufficient. (2) Opt-Milvus, for all-𝑘 ANN queries, the experi-
mental results reveal that 𝑘′ in Milvus is always no larger than 2𝑘 ,
indicating amaximumof two iterative searches. Hence, we also com-
pare our approaches to themethodOpt-Milvus by setting its𝑘′ = 2𝑘
directly, which can run without iteration to enhance its efficiency.
(3) VBASE [52] is a state-of-the-art vector database system that
supports multi-attribute queries, i.e., the items in the database com-
prising multiple vectors, a multi-vector query utilizing an aggregate
function on these multiple vectors as a distance metric. Here, for our
proposed all and any-𝑘 ANN search queries, each item in the data-
base can be seen to contain𝑚 identical vectors, with the aggregate
function being our proposed all/any-radius in Section 4. At a high
level, it involves a two-phase search method. Initially, it searches
for the 1-ANN of each query vector and subsequently conducts
all/any-𝑘 ANN searches based on these results. (4) Centroid, to
highlight the effectiveness of our approaches in all-𝑘 ANN queries,
we also compare to a baseline,Centroid, where ourRadiusSearch al-
gorithm directly starts search from the centroid of all query vectors.
(5) RadiusSearch and RadiusSearch+, our approaches proposed in
Section 4 and 5, respectively. All our source codes are available at
https://anonymous.4open.science/r/Multi-Vector-Queries/.

To ensure fair comparisons, all compared approaches construct
an identical HNSW index [29] as the proximity graph for search.
We fix the parameters for the HNSW index as 𝐸𝐹 = 400 and𝑀 = 32
across all datasets. For evaluating query performance, we fine-
tune additional parameters on each dataset to achieve a Pareto-
optimal recall-QPS curve. We set 𝑘 = 10 for queries and assess the
search algorithms’ performance using a single thread. Parameters

within the search algorithm, i.e., the beam width, are incrementally
adjusted to attain the desired recall levels in our experiments.
Performance Metrics: Following existing ANN benchmarks [27,
42, 49], we employ QPS (Queries Per Second) to measure efficiency
and use Recall to show the accuracy. QPS is the quantity of queries
processed per second, while Recall is precisely defined in Section 2.
Experimental Environments: The experiments are conducted
on a Linux server with an AMD EPYC 7443 24-Core Processor and
1024 GB memory. All algorithms are implemented in C++14. The
code is compiled with g++ 8.5 under O3 optimization.
Exp. 1: Overall Performance of All-𝑘 ANN Search. Fig. 5
presents the QPS-recall curves for our approaches and two ex-
isting methods. Across all datasets, our approaches consistently
enhance overall query performance, significantly improving QPS by
over 1 order of magnitude with the same recall. This improvement
primarily stems from employing all-radius as the distance metric,
enabling a global search without the need to set optimal 𝑘′ for each
query vector. In comparing RadiusSearch+ with RadiusSearch, the
results show that RadiusSearch+may underperform RadiusSearch
initially at lower recall levels but outperforms as recall increases. It
is due to the fixed time required to compute the optimal intersection
vector 𝑣 while adjusting search parameters, which accounts for a
significant ratio of overall time when the beam width 𝑤 is small
(as illustrated in Exp. 5). But this limitation will decrease, and it
even can be ignored as𝑤 increases, i.e., aiming at a high recall level.
Comparing Centroid with RadiusSearch, starting the search at the
centroid of all query vectors does not enhance efficiency; in fact, it
can even worsen it. This is primarily due to the centroid not consis-
tently being proximate to the all-1 NN. Moreover, not starting the
search from the entry point compromises search performance and
fails to leverage the hierarchical structure of HNSW. Furthermore,
Opt-Milvus enhances the efficiency of Milvus without impacting
recall; however, it still much worse than our approaches.
Exp. 2: Overall Performance of Any 𝑘-ANN Search. Fig. 6
plots the QPS-recall curves by varying the parameter named beam
width for the different search algorithms. Our two-step approach,

https://anonymous.4open.science/r/Multi-Vector-Queries/

WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates Jiadong Xie, Jeffrey Liang, Siyi Teng, Jeffrey Xu Yu, and Yingfan Liu

5 10 15 20 25 30
k

100

101

102

QP
S

Milvus VBASE RadiusSearch RadiusSearch+

5 10 15 20 25 30
k

101

102

103

104

QP
S

(a) SIFT (All)

5 10 15 20 25 30
k

101

102

103

QP
S

(b) Crawl (All)

5 10 15 20 25 30
k

103

104

QP
S

(c) SIFT (Any)

5 10 15 20 25 30
k

102

103

QP
S

(d) Crawl (Any)

Figure 7: QPS at Recall@𝑘 = 0.99 When Varying the 𝑘 (Exp. 3)

0.80 0.85 0.90 0.95 1.00
Recall@10

101

102

103

QP
S

m = 2 m = 5 m = 15 m = 20

0.90 0.92 0.94 0.96 0.98 1.00
Recall@10

103

104

QP
S

(a) SIFT (All)

0.90 0.92 0.94 0.96 0.98 1.00
Recall@10

103

104

QP
S

(b) Crawl (All)

0.90 0.92 0.94 0.96 0.98 1.00
Recall@10

103

104

QP
S

(c) SIFT (Any)

0.90 0.92 0.94 0.96 0.98 1.00
Recall@10

103

104

QP
S

(d) Crawl (Any)

Figure 8: Search Performance When Varying the𝑚 (Exp. 4)

0 100 200 300 400
w

0

25

50

75

100

Ra
tio

 (%
)

Phase 1 Phase 2 Phase 3 Recall@10

0.6

0.7

0.8

0.9

1.0

Re
ca

ll@
10

0 50 100 150 200
w

0

25

50

75

100

Ra
tio

 (%
)

0.6

0.7

0.8

0.9

1.0

Re
ca

ll@
10

(a) SIFT (All)

0 100 200 300 400
w

0

25

50

75

100

Ra
tio

 (%
)

0.6

0.7

0.8

0.9

1.0

Re
ca

ll@
10

(b) Crawl (All)

0 50 100 150 200
w

0

25

50

75

100

Ra
tio

 (%
)

0.4

0.6

0.8

1.0

Re
ca

ll@
10

(c) SIFT (Any)

0 20 40 60 80
w

0

25

50

75

100

Ra
tio

 (%
)

0.4

0.6

0.8

1.0

Re
ca

ll@
10

(d) Crawl (Any)

Figure 9: Time Decomposition of RadiusSearch+ (Exp. 5)

RadiusSearch+, consistently outperforms across all datasets. The
first step of RadiusSearch+ incurs similar time costs regardless of
the beam width parameter𝑤 , implying that its overall time ratio de-
creases as higher recall levels are achieved. Thus, the enhancements
of RadiusSearch+ become more pronounced with higher recall tar-
gets. In contrast, the performance of RadiusSearch may even lag
behind two existing approaches, as discussed in Section 5.1, since
it solely approaches the region of any-1 NN, potentially leading to
greater distances from the vectors in any-𝑘 NN.
Exp. 3: Varying the 𝑘 for Queries. Fig. 7 presents the QPS of
various algorithms for all and any-𝑘 ANN searches when achiev-
ing a recall of 0.99. We adjust the 𝑘 values for both search types
across {5, 10, 15, 20, 25, 30} and present their corresponding QPS.
Results on other datasets are included in Appendix. We can ob-
serve that RadiusSearch+ consistently outperforms all other ap-
proaches across all datasets and for both search types. Moreover,
our method demonstrates stable performance when varying the 𝑘
value to achieve a recall of 0.99, highlighting its scalability across
different scenarios of varying 𝑘 values.
Exp. 4: Varying the Number of Vectors𝑚 in Queries. In this set
of experiments, we examine the impact of the number of vectors in
each query on RadiusSearch+. By varying the number of vectors𝑚
in each query across {2, 5, 15, 20}, we plot the QPS-recall curves in
Fig. 8 and results on other datasets are included in Appendix. The
results indicate that the required time increases as𝑚 increases to
achieve the same recall level. However, the rate of time increase is
proportionally lower than the scale of increase in𝑚, which demon-
strates the scalability of RadiusSearch+ in handling queries with a
much larger number of vectors.
Exp. 5: Time Decomposition of Our Approaches. In Fig. 9, we
present the time breakdown of RadiusSearch+ and the recall un-
der varying values of beam width used in the search on SIFT and

Crawl datasets. Results on other datasets are included in Appen-
dix. For all-𝑘 ANN search, RadiusSearch+ comprises three phases:
(1) calculating the optimal intersection vector 𝑣 ; (2) performing
1-ANN search when the query is 𝑣 ; and (3) executing all-𝑘 ANN via
RadiusSearch. The results reveal that the first phase consumes a
substantial amount of time, exceeding 50% when𝑤 is small, i.e., at
low recall levels. As𝑤 increases, achieving a reasonable recall level,
i.e., above 0.99, the proportion of time of the first phase is reduced,
thereby enhancing the search performance of RadiusSearch+ for
all-𝑘 ANN search. For the any-𝑘 ANN search, the process involves
two phases: (1) conducting 1-ANN search for each query vector;
and (2) executing any-𝑘 ANN via RadiusSearch. While the first
phase exclusively entails 1-ANN search under Euclidean distance,
which is fixed under different values of𝑤 , it must be performed for
each query vector, leading to a relatively high time ratio when𝑤

is small. With an increase in 𝑤 , this ratio significantly decreases,
becoming much smaller than the time spent on the second phase.
Exp.s 6 & 7: Different Selection Strategy and Other Distance
Metrics. We evaluate our approach RadiusSearch+ by varying the
strategy for selecting query vectors and extending it to support
cosine distance and inner product (two other commonly utilized
distance metrics). The detailed results can be found in Appendix.

7 Conclusion and Future Work
In this paper, we introduce and study the all/any-𝑘 ANN search
problem. We propose two distance metrics for assessing rankings
of vectors among the dataset for all/any-𝑘 NN. Building upon this,
we design a proximity graph-based search algorithm. By decou-
pling the two stages in our proposed search algorithm and further
developing algorithms for the first stage, we boost efficiency and
effectiveness for the all and any-𝑘 ANN search problem, respec-
tively. Our extensive experiments demonstrate that our proposed
algorithms outperform all baseline methods by up to an order of
magnitude in efficiency with superior quality in all/any-𝑘 results.

We would like to mention the following extensions and possible
directions as future work. (1) RadiusSearch+ algorithm is exclu-
sive to graph-based indexing methods. Conversely, RadiusSearch
algorithm can be adapted for use in non-graph-based approaches
by employing the all/any radius as the distance metric, such as
SCANN [18] and RabitQ [15, 16]. Exploring methods to enhance the
efficiency of non-graph-based indexing for answering the all/any-𝑘
ANN queries is a potential area for future research. (2) The the-
oretical guarantee of our approaches for all/any-𝑘 ANN can be
ensured by replacing HNSW with LMG proposed in [45]. How-
ever, LMG needs 𝑂 (𝑛2𝑑) time and size for index construction. It is
worth exploring a practical index with theoretical guarantees for
the single-reference 𝑘-ANN, as it could be seamlessly integrated
into our algorithms to achieve theoretical guarantees on results.

Acknowledgment
This work was supported by the Jing-Jin-Ji Regional Integrated
Environmental Improvement-National Science and Technology Ma-
jor Project of Ministry of Ecology and Environment of China (No.
2025ZD1200600).

Breaking the Single-Reference-Vector Barrier in Approximate Nearest Neighbor Search WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates

References
[1] 2010. Datasets for approximate nearest neighbor search. http://corpus-texmex.

irisa.fr/.
[2] 2023. Common Crawl. https://commoncrawl.org/.
[3] Thierry Bertin-Mahieux, Daniel P. W. Ellis, Brian Whitman, and Paul Lamere.

2011. The Million Song Dataset. In Proceedings of the 12th International Society for
Music Information Retrieval Conference, ISMIR 2011. University of Miami, 591–596.

[4] Stephen P Boyd and Lieven Vandenberghe. 2004. Convex optimization. Cambridge
university press.

[5] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners. In
NeurIPS 2020.

[6] Qi Chen, Xiubo Geng, Corby Rosset, Carolyn Buractaon, Jingwen Lu, Tao Shen,
Kun Zhou, Chenyan Xiong, Yeyun Gong, Paul N. Bennett, Nick Craswell, Xing
Xie, Fan Yang, Bryan Tower, Nikhil Rao, Anlei Dong, Wenqi Jiang, Zheng Liu,
Mingqin Li, Chuanjie Liu, Zengzhong Li, Rangan Majumder, Jennifer Neville,
Andy Oakley, Knut Magne Risvik, Harsha Vardhan Simhadri, Manik Varma,
Yujing Wang, Linjun Yang, Mao Yang, and Ce Zhang. 2024. MS MARCO Web
Search: A Large-scale Information-rich Web Dataset with Millions of Real Click
Labels. In WWW. ACM, 292–301.

[7] Tingyang Chen, Cong Fu, Xiangyu Ke, Yunjun Gao, Yabo Ni, and Anxiang Zeng.
2025. Stitching Inner Product and Euclidean Metrics for Topology-aware Maxi-
mum Inner Product Search. In SIGIR 2025. ACM, 2341–2350.

[8] Yaoqi Chen, Ruicheng Zheng, Qi Chen, Shuotao Xu, Qianxi Zhang, Xue Wu,
Weihao Han, Hua Yuan, Mingqin Li, Yujing Wang, Jason Li, Fan Yang, Hao Sun,
Weiwei Deng, Feng Sun, Qi Zhang, and Mao Yang. 2024. OneSparse: A Unified
System for Multi-index Vector Search. In WWW 2024. ACM, 393–402.

[9] Richard Connor, Alan Dearle, David Morrison, and Edgar Chávez. 2023. Similarity
Search with Multiple-Object Queries. In SISAP 2023, Oscar Pedreira and Vladimir
Estivill-Castro (Eds.), Vol. 14289. Springer, 223–237.

[10] Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. 2008.
Computational geometry: algorithms and applications, 3rd Edition. Springer.

[11] Ishita Doshi, Dhritiman Das, Ashish Bhutani, Rajeev Kumar, Rushi Bhatt, and
Niranjan Balasubramanian. 2021. LANNS: A Web-Scale Approximate Nearest
Neighbor Lookup System. Proc. VLDB Endow. 15, 4 (2021), 850–858.

[12] Kaspar Fischer, Bernd Gärtner, and Martin Kutz. 2003. Fast Smallest-Enclosing-
Ball Computation in High Dimensions. In Algorithms - ESA 2003, 11th Annual
European Symposium, Budapest, Hungary, September 16-19, 2003, Proceedings
(Lecture Notes in Computer Science, Vol. 2832). Springer, 630–641.

[13] Cong Fu, Changxu Wang, and Deng Cai. 2022. High Dimensional Similarity
Search With Satellite System Graph: Efficiency, Scalability, and Unindexed Query
Compatibility. IEEE Trans. Pattern Anal. Mach. Intell. 44, 8 (2022), 4139–4150.

[14] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2019. Fast Approximate
Nearest Neighbor Search With The Navigating Spreading-out Graph. Proc. VLDB
Endow. 12, 5 (2019), 461–474.

[15] Jianyang Gao, Yutong Gou, Yuexuan Xu, Yongyi Yang, Cheng Long, and Ray-
mond Chi-Wing Wong. 2025. Practical and Asymptotically Optimal Quantization
of High-Dimensional Vectors in Euclidean Space for Approximate Nearest Neigh-
bor Search. Proc. ACM Manag. Data 3, 3 (2025), 202:1–202:26.

[16] Jianyang Gao and Cheng Long. 2024. RaBitQ: Quantizing High-Dimensional
Vectors with a Theoretical Error Bound for Approximate Nearest Neighbor Search.
Proc. ACM Manag. Data 2, 3 (2024), 167.

[17] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature Learning for
Networks. In SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, 855–864.

[18] Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern, and
Sanjiv Kumar. 2020. Accelerating Large-Scale Inference with Anisotropic Vector
Quantization. In Proceedings of the 37th International Conference on Machine
Learning, ICML 2020 (Proceedings of Machine Learning Research, Vol. 119). PMLR,
3887–3896.

[19] D. Frank Hsu and Isak Taksa. 2005. Comparing Rank and Score Combination
Methods for Data Fusion in Information Retrieval. Inf. Retr. 8, 3 (2005), 449–480.

[20] Piotr Indyk and Rajeev Motwani. 1998. Approximate Nearest Neighbors: Towards
Removing the Curse of Dimensionality. In Proceedings of the Thirtieth Annual
ACM Symposium on the Theory of Computing. ACM, 604–613.

[21] Wenqi Jiang, Marco Zeller, Roger Waleffe, Torsten Hoefler, and Gustavo Alonso.
2024. Chameleon: a Heterogeneous and Disaggregated Accelerator System for
Retrieval-Augmented Language Models. Proc. VLDB Endow. 18, 1 (2024), 42–52.

[22] Xinke Jiang, Rihong Qiu, Yongxin Xu, Wentao Zhang, Yichen Zhu, Ruizhe Zhang,
Yuchen Fang, Chu Xu, Junfeng Zhao, and YashaWang. 2024. RAGraph: A General
Retrieval-Augmented Graph Learning Framework. In NeurIPS 2024.

[23] Omar Khattab and Matei Zaharia. 2020. ColBERT: Efficient and Effective Passage
Search via Contextualized Late Interaction over BERT. In SIGIR. ACM, 39–48.

[24] Piyush Kumar, Joseph S. B. Mitchell, and E. Alper Yildirim. 2003. Approximate
minimum enclosing balls in high dimensions using core-sets. ACM J. Exp. Algo-
rithmics 8 (2003).

[25] Govinda D. Kurup. 1992. Database Organized on the Basis of Similarities with
Applications in Computer Vision. Ph. D. Dissertation.

[26] Weiwei Li. 2025. Enhanced automated art curation using supervised modified
CNN for art style classification. Scientific Reports 15, 1 (2025), 7319.

[27] Wen Li, Ying Zhang, Yifang Sun, Wei Wang, Mingjie Li, Wenjie Zhang, and
Xuemin Lin. 2020. Approximate Nearest Neighbor Search on High Dimensional
Data - Experiments, Analyses, and Improvement. IEEE Trans. Knowl. Data Eng.
32, 8 (2020), 1475–1488.

[28] Mugeng Liu, Siqi Zhong, Qi Yang, Yudong Han, Xuanzhe Liu, and Yun Ma. 2025.
WebANNS: Fast and Efficient Approximate Nearest Neighbor Search in Web
Browsers. In SIGIR 2025. ACM, 2483–2492.

[29] Yury A. Malkov and Dmitry A. Yashunin. 2020. Efficient and Robust Approximate
Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs. IEEE
Trans. Pattern Anal. Mach. Intell. 42, 4 (2020), 824–836.

[30] Javier Marín, Aritro Biswas, Ferda Ofli, Nicholas Hynes, Amaia Salvador, Yusuf
Aytar, Ingmar Weber, and Antonio Torralba. [n. d.]. Recipe1M+: A Dataset for
Learning Cross-Modal Embeddings for Cooking Recipes and Food Images. IEEE
Trans. Pattern Anal. Mach. Intell. 43, 1 ([n. d.]), 187–203.

[31] Tomás Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean.
2013. Distributed Representations of Words and Phrases and their Composition-
ality. In 27th Annual Conference on Neural Information Processing Systems 2013.
3111–3119.

[32] Jason Mohoney, Anil Pacaci, Shihabur Rahman Chowdhury, Ali Mousavi, Ihab F.
Ilyas, Umar Farooq Minhas, Jeffrey Pound, and Theodoros Rekatsinas. 2023. High-
Throughput Vector Similarity Search in Knowledge Graphs. Proc. ACM Manag.
Data 1, 2 (2023), 197:1–197:25.

[33] Nasser M Nasrabadi and Robert A King. 1988. Image coding using vector quanti-
zation: A review. IEEE Transactions on communications 36, 8 (1988), 957–971.

[34] Yun Peng, Byron Choi, Tsz Nam Chan, Jianye Yang, and Jianliang Xu. 2023.
Efficient Approximate Nearest Neighbor Search in Multi-dimensional Databases.
Proc. ACM Manag. Data 1, 1 (2023), 54:1–54:27.

[35] Liudmila Prokhorenkova and Aleksandr Shekhovtsov. 2020. Graph-based Nearest
Neighbor Search: From Practice to Theory. In Proceedings of the 37th International
Conference on Machine Learning, ICML 2020 (Proceedings of Machine Learning
Research, Vol. 119). PMLR, 7803–7813.

[36] Amaia Salvador, Nicholas Hynes, Yusuf Aytar, Javier Marín, Ferda Ofli, Ingmar
Weber, and Antonio Torralba. 2017. Learning Cross-Modal Embeddings for
Cooking Recipes and Food Images. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition. IEEE Computer Society, 3068–3076.

[37] Badrul Munir Sarwar, George Karypis, Joseph A. Konstan, and John Riedl. 2001.
Item-based collaborative filtering recommendation algorithms. In WWW 10.
ACM, 285–295.

[38] Naoya Sogi, Takashi Shibata, and Makoto Terao. 2024. Object-Aware Query
Perturbation for Cross-Modal Image-Text Retrieval. In ECCV 2024, Vol. 15137.
Springer, 447–464.

[39] Gilbert Strang. 2000. Linear algebra and its applications.
[40] Philip Sun, David Simcha, Dave Dopson, Ruiqi Guo, and Sanjiv Kumar. 2023.

SOAR: Improved Indexing for Approximate Nearest Neighbor Search. In Thirty-
seventh Conference on Neural Information Processing Systems.

[41] Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu, Shengjun Li, Xi-
angyu Wang, Xiangzhou Guo, Chengming Li, Xiaohai Xu, Kun Yu, Yuxing Yuan,
Yinghao Zou, Jiquan Long, Yudong Cai, Zhenxiang Li, Zhifeng Zhang, Yihua
Mo, Jun Gu, Ruiyi Jiang, Yi Wei, and Charles Xie. 2021. Milvus: A Purpose-Built
Vector Data Management System. In SIGMOD ’21. ACM, 2614–2627.

[42] Mengzhao Wang, Xiaoliang Xu, Qiang Yue, and Yuxiang Wang. 2021. A Com-
prehensive Survey and Experimental Comparison of Graph-Based Approximate
Nearest Neighbor Search. Proc. VLDB Endow. 14, 11 (2021), 1964–1978.

[43] Wenjie Wang, Fuli Feng, Liqiang Nie, and Tat-Seng Chua. 2022. User-controllable
Recommendation Against Filter Bubbles. In SIGIR ’22. ACM, 1251–1261.

[44] Stephen J. Wright. 1997. Primal-Dual Interior-Point Methods. SIAM.
[45] Jiadong Xie, Jeffrey Xu Yu, and Yingfan Liu. 2025. Graph Based K-Nearest

Neighbor Search Revisited. ACM Trans. Database Syst. (May 2025).
[46] Jiadong Xie, Jeffrey Xu Yu, Siyi Teng, and Yingfan Liu. 2025. Beyond Vector

Search: Querying With and Without Predicates. Proc. ACM Manag. Data 3, 6
(2025), 1–26.

[47] Yuexuan Xu, Jianyang Gao, Yutong Gou, Cheng Long, and Christian S. Jensen.
2024. iRangeGraph: Improvising Range-dedicated Graphs for Range-filtering
Nearest Neighbor Search. Proc. ACM Manag. Data 2, 6 (2024), 239:1–239:26.

[48] Ming Yang, Yuzheng Cai, and Weiguo Zheng. 2024. CSPG: Crossing Sparse
Proximity Graphs for Approximate Nearest Neighbor Search. In NeurIPS 2024.

[49] Shuo Yang, Jiadong Xie, Yingfan Liu, Jeffrey Xu Yu, Xiyue Gao, Qianru Wang,
Yanguo Peng, and Jiangtao Cui. 2025. Revisiting the Index Construction of
Proximity Graph-Based Approximate Nearest Neighbor Search. Proc. VLDB
Endow. 18, 6 (2025), 1825–1838.

[50] E. Alper Yildirim. 2008. Two Algorithms for the Minimum Enclosing Ball Problem.

http://corpus-texmex.irisa.fr/
http://corpus-texmex.irisa.fr/
https://commoncrawl.org/

WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates Jiadong Xie, Jeffrey Liang, Siyi Teng, Jeffrey Xu Yu, and Yingfan Liu

SIAM J. Optim. 19, 3 (2008), 1368–1391.
[51] Ziqi Yin, Jianyang Gao, Pasquale Balsebre, Gao Cong, and Cheng Long. 2025.

DEG: Efficient Hybrid Vector Search Using the Dynamic Edge Navigation Graph.
Proc. ACM Manag. Data 3, 1 (2025), 29:1–29:28.

[52] Qianxi Zhang, Shuotao Xu, Qi Chen, Guoxin Sui, Jiadong Xie, Zhizhen Cai, Yaoqi
Chen, Yinxuan He, Yuqing Yang, Fan Yang, Mao Yang, and Lidong Zhou. 2023.
VBASE: Unifying Online Vector Similarity Search and Relational Queries via
Relaxed Monotonicity. In 17th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2023. USENIX Association, 377–395.

[53] Shaoting Zhang, Ming Yang, Timothée Cour, Kai Yu, and Dimitris N. Metaxas.
2015. Query Specific Rank Fusion for Image Retrieval. IEEE Trans. Pattern Anal.
Mach. Intell. 37, 4 (2015), 803–815.

[54] Jiongli Zhu, Yue Wang, Bailu Ding, Philip A Bernstein, Vivek Narasayya, and
Surajit Chaudhuri. 2025. MINT: Multi-Vector Search Index Tuning. arXiv preprint
arXiv:2504.20018 (2025).

A Theorems and Proofs
Proof of Theorem 4.2.
Proof Sketch: Since the all/any-radius ¤𝑟★(𝑢) =

max/min𝑖∈{1,· · · ,𝑚} 𝛿 (𝑞𝑖 , 𝑢), and 𝛿 (𝑞𝑖 , 𝑢) ≤ 𝛿 (𝑞𝑖 , 𝑣) + 𝛿 (𝑢, 𝑣)
always holds, we can derive ¤𝑟★(𝑢) = max/min𝑖∈{1,· · · ,𝑚} 𝛿 (𝑞𝑖 , 𝑢) ≤
𝛿 (𝑢, 𝑣) + max/min𝑖∈{1,· · · ,𝑚} 𝛿 (𝑞𝑖 , 𝑣) = 𝛿 (𝑢, 𝑣) + ¤𝑟★(𝑣). Sim-
ilarly, as 𝛿 (𝑞𝑖 , 𝑢) ≥ 𝛿 (𝑞𝑖 , 𝑣) − 𝛿 (𝑢, 𝑣) always holds, we
have ¤𝑟★(𝑢) = max/min𝑖∈{1,· · · ,𝑚} 𝛿 (𝑞𝑖 , 𝑢) ≥ −𝛿 (𝑢, 𝑣) +
max/min𝑖∈{1,· · · ,𝑚} 𝛿 (𝑞𝑖 , 𝑣) = ¤𝑟★(𝑣) − 𝛿 (𝑢, 𝑣). □

Theorem A.1: Given a dataset 𝐷 and a query 𝑞 = [𝑞1, · · · , 𝑞𝑚], let
R𝑖 be the 𝑘-NN of query vector 𝑞𝑖 , R̄ =

⋃𝑚
𝑖=1 R𝑖 , and R̄∃𝑟 = {𝑢 ∈

R̄ |∃𝑖 ∈ {1, · · · ,𝑚}, 𝛿 (𝑢, 𝑞𝑖) ≤ 𝑟 }, denote 𝑟★ is the smallest value
such that

���R̄∃
𝑟★

��� ≥ 𝑘 , we have R̄∃
𝑟★

is the any-𝑘 of 𝑞.

Proof Sketch: Assume that one vector 𝑣 ∈ R̄∃
𝑟★

is not one of the
any-𝑘 NN of 𝑞, then there exist a vector 𝑤 ∉ R̄∃

𝑟★
is one of the

any-𝑘 NN of 𝑞. Hence ∃𝑖 ∈ {1, · · · ,𝑚}, 𝛿 (𝑣, 𝑞𝑖) ≤ 𝑟★ but ∀𝑖 ∈
{1, · · · ,𝑚}, 𝛿 (𝑤,𝑞𝑖) > 𝑟★. Since𝑤 is one of any-𝑘 NN and 𝑣 is not
any-𝑘 NN, there is a 𝑟 that 𝑤 ∈ R∃𝑟 and 𝑣 ∉ R∃𝑟 , which means
∃𝑞𝑖 ∈ 𝑞, 𝛿 (𝑤,𝑞𝑖) ≤ 𝑟 but ∀𝑞𝑖 ∈ 𝑞, 𝛿 (𝑣, 𝑞𝑖) > 𝑟 , which leads to a
contradiction since no such 𝑟 exists compared to 𝑟★. □

Theorem A.2: Given a dataset 𝐷 and a query 𝑞 = [𝑞1, · · · , 𝑞𝑚], let
R𝑖 be the 𝑘-NN of query vector 𝑞𝑖 , R̄ =

⋃𝑚
𝑖=1 R𝑖 , and R̄∀𝑟 = {𝑢 ∈

R̄ |∀𝑖 ∈ {1, · · · ,𝑚}, 𝛿 (𝑢, 𝑞𝑖) ≤ 𝑟 }, denote 𝑟★ is the smallest value such
that

���R̄∀
𝑟★

��� ≥ 𝑘 , we have R̄∀
𝑟★

is the all-𝑘 of 𝑞 when R̄∀
𝑟★
⊆ R𝑖 holds.

Proof Sketch: Assume that one vector 𝑣 ∈ R̄∀
𝑟★

is not all-𝑘 NN,
then there exist a vector 𝑤 ∉ R̄∀

𝑟★
is one of all-𝑘 NN. Since

R̄∀
𝑟★
⊆ R𝑖 holds, we have ∀𝑖 ∈ {1, · · · ,𝑚}, 𝛿 (𝑣, 𝑞𝑖) ≤ 𝑟★, but

∃𝑖 ∈ {1, · · · ,𝑚}, 𝛿 (𝑤,𝑞𝑖) > 𝑟★. Since 𝑣 is not all-𝑘 NN and 𝑤 is
all 𝑘 NN, there exist a 𝑟 that ∀𝑖 ∈ {1, · · · ,𝑚}, 𝛿 (𝑤,𝑞𝑖) ≤ 𝑟 but
∃𝑖 ∈ {1, · · · ,𝑚}, 𝛿 (𝑣, 𝑞𝑖) > 𝑟 . There is a contradiction in the value
of 𝑟 and 𝑟★. □

B Additional Experimental Results
Statistics of Datasets. The summary of datasets conducted in the
experiments can be found in Table 1, with the number of dimensions
(dim.), the number of vectors in the base dataset (#vectors), and
the number of vectors provided for queries from the query dataset
(#queries).

Table 1: Statistics of Datasets

Dataset dim. #vectors #queries Type

Recipe 2,048 887,536 1,000 Image
Msong 420 992,272 200 Audio
SIFT 128 1,000,000 10,000 Image
GIST 960 1,000,000 1,000 Image
Crawl 300 1,989,995 10,000 Text

5 10 15 20 25 30
k

102

103

QP
S

Milvus VBASE RadiusSearch RadiusSearch+

5 10 15 20 25 30
k

100

101

102

QP
S

(a) Recipe (All-𝑘 ANN)

5 10 15 20 25 30
k

101

102

103

QP
S

(b) Msong (All-𝑘 ANN)

5 10 15 20 25 30
k

100

101

102

103

QP
S

(c) GIST (All-𝑘 ANN)

5 10 15 20 25 30
k

100

101

102

QP
S

(d) Recipe (Any-𝑘 ANN)

5 10 15 20 25 30
k

102

103

QP
S

(e) Msong (Any-𝑘 ANN)

5 10 15 20 25 30
k

101

102

103

QP
S

(f) GIST (Any-𝑘 ANN)

Figure 10: QPS at Recall@𝑘 = 0.99 When Varying 𝑘 (Exp. 3)

0.90 0.92 0.94 0.96 0.98 1.00
Recall@10

103

104

QP
S

m = 2 m = 5 m = 15 m = 20

0.90 0.92 0.94 0.96 0.98 1.00
Recall@10

102

103

QP
S

(a) Recipe (All-𝑘 ANN)

0.90 0.92 0.94 0.96 0.98 1.00
Recall@10

102

103

104

QP
S

(b) Msong (All-𝑘 ANN)

0.90 0.92 0.94 0.96 0.98 1.00
Recall@10

102

103

QP
S

(c) GIST (All-𝑘 ANN)

0.90 0.92 0.94 0.96 0.98 1.00
Recall@10

101

102

103

QP
S

(d) Recipe (Any-𝑘 ANN)

0.90 0.92 0.94 0.96 0.98 1.00
Recall@10

103

104

QP
S

(e) Msong (Any-𝑘 ANN)

0.90 0.92 0.94 0.96 0.98 1.00
Recall@10

102

103

QP
S

(f) GIST (Any-𝑘 ANN)

Figure 11: Search Performance When Varying the𝑚 (Exp. 4)

0 100 200 300 400
w

0

25

50

75

100

Ra
tio

 (%
)

Phase 1 Phase 2 Phase 3 Recall@10

0.6

0.7

0.8

0.9

1.0

Re
ca

ll@
10

0 250 500 750 1000
w

0

25

50

75

100

Ra
tio

 (%
)

0.4

0.6

0.8

1.0

Re
ca

ll@
10

(a) Recipe (All-𝑘 ANN)

0 50 100 150
w

0

25

50

75

100

Ra
tio

 (%
)

0.7

0.8

0.9

1.0

Re
ca

ll@
10

(b) Msong (All-𝑘 ANN)

0 100 200 300 400
w

0

25

50

75

100

Ra
tio

 (%
)

0.6

0.7

0.8

0.9

1.0

Re
ca

ll@
10

(c) GIST (All-𝑘 ANN)

0 200 400
w

0

25

50

75

100

Ra
tio

 (%
)

0.4

0.6

0.8

1.0

Re
ca

ll@
10

(d) Recipe (Any-𝑘 ANN)

0 20 40 60 80
w

0

25

50

75

100

Ra
tio

 (%
)

0.4

0.6

0.8

1.0

Re
ca

ll@
10

(e) Msong (Any-𝑘 ANN)

0 200 400 600
w

0

25

50

75

100

Ra
tio

 (%
)

0.4

0.6

0.8

1.0

Re
ca

ll@
10

(f) GIST (Any-𝑘 ANN)

Figure 12: Time Decomposition of RadiusSearch+ (Exp. 5)

Exp. 6: Varying the Selection Strategy of Vectors in Each
Query. In this part, we evaluate the search performance of
RadiusSearch+ by varying the vector selection strategy for each
query. First, we generate query vectors by randomly selecting a

Breaking the Single-Reference-Vector Barrier in Approximate Nearest Neighbor Search WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates

vector from the query vector dataset and then generating 5 dis-
tinct random noise perturbations of this vector as query vectors.
This strategy is referred to as Perturbation. Second, we evaluate
the strategy where each query vector is randomly chosen from the
query vector datasets, labeled as Random. As depicted in Fig. 13, the
Perturbation queries demonstrate even higher QPS performance
compared to those generated using the selection strategy outlined
in the “datasets” part. The Random approach showcases slightly
slower yet still efficient results.

0.90 0.92 0.94 0.96 0.98 1.00
Recall@10

103

104

QP
S

Perturbation
Random

(a) SIFT (All)

0.90 0.92 0.94 0.96 0.98 1.00
Recall@10

103

104

QP
S

Perturbation
Random

(b) Crawl (All)

0.90 0.92 0.94 0.96 0.98 1.00
Recall@10

103

104

QP
S

Perturbation
Random

(c) SIFT (Any)

0.90 0.92 0.94 0.96 0.98 1.00
Recall@10

103

104

QP
S

Perturbation
Random

(d) Crawl (Any)

Figure 13: Varying Query Selection Strategy (Exp. 6)
Exp. 7: Extend to Other Distance Metrics. In real applications,
cosine similarity and inner product are two other commonly used

distance metrics. Here, we extend our approach RadiusSearch+
to support these metrics, with an evaluation of its performance.
Embedding normalization is a common practice, e.g., [30]; when
embeddings are normalized, inner product, cosine distance, and Eu-
clidean distance are equivalent. To further support non-normalized
inner product, following [7], we adjust the pruning strategy for
the index, i.e., modifying a small portion of edges in HNSW. The
results of our RadiusSearch+ on cosine distance and inner product
for SIFT and Crawl datasets are illustrated in Fig. 14, demonstrating
its consistent performance across these distance metrics.

0.90 0.92 0.94 0.96 0.98 1.00
Recall@10

103

104

QP
S

cosine distance
inner product

(a) SIFT (All)

0.90 0.92 0.94 0.96 0.98 1.00
Recall@10

103

104

QP
S

cosine distance
inner product

(b) Crawl (All)

0.90 0.92 0.94 0.96 0.98 1.00
Recall@10

103

104

QP
S

cosine distance
inner product

(c) SIFT (Any)

0.90 0.92 0.94 0.96 0.98 1.00
Recall@10

103

104

QP
S

cosine distance
inner product

(d) Crawl (Any)

Figure 14: Performance on Other Distance Metrics (Exp. 7)

	Abstract
	1 Introduction
	2 Preliminaries
	3 Baseline Approaches and Limitations
	4 Distance Metrics and Search Algorithms
	5 Two-Stage Searches for All/Any-k ANN
	5.1 Search Algorithm for Any-k ANN Search
	5.2 Search Algorithm for All-k ANN Search

	6 Evaluation
	7 Conclusion and Future Work
	References
	A Theorems and Proofs
	B Additional Experimental Results

