
World Wide Web
https://doi.org/10.1007/s11280-021-00905-3

Discovering key users for defending network structural
stability

Fan Zhang1 · Jiadong Xie2 ·Kai Wang3 · Shiyu Yang1 ·Yu Jiang1

Received: 21 March 2021 / Revised: 27 May 2021 / Accepted: 1 June 2021 /

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
The structural stability of a network reflects the ability of the network to maintain a sus-
tainable service. As the leave of some users will significantly break network stability, it is
critical to discover these key users for defending network stability. The model of k-core,
a maximal subgraph where each vertex has at least k neighbors in the subgraph, is often
used to measure the stability of a network. Besides, the coreness of a vertex, the largest k

such that the k-core contains the vertex, is validated as the “best practice” for measuring the
engagement of the vertex. In this paper, we propose and study the collapsed coreness prob-
lem: finding b vertices (users) s.t. the deletion of these vertices leads to the largest coreness
loss (the total decrease of coreness from every vertex). We prove that the problem is NP-
hard and hard to approximate. We show that the collapsed coreness is more effective and
challenging than the existing models. An efficient greedy algorithm is proposed with pow-
erful pruning rules. The algorithm is adapted to find the key users within a given time limit.
Extensive experiments on 12 real-life graphs demonstrate the effectiveness of our model
and the efficiency of the proposed method.

Keywords Network stability · Core decomposition · Graph edit

This article belongs to the Topical Collection: Special Issue on Large-Scale Graph Data Analytics
Guest Editors: Xuemin Lin, Lu Qin, Wenjie Zhang, and Ying Zhang

� Yu Jiang
jiangyu@gzhu.edu.cn

Fan Zhang
zhangf@gzhu.edu.cn

Jiadong Xie
xiejiadong0623@gmail.com

Kai Wang
kai.wang@unsw.edu.au

Shiyu Yang
syyang@gzhu.edu.cn

1 Guangzhou University, Guangzhou, China
2 East China Normal University, Shanghai, China
3 University of New South Wales, Sydney, Australia

http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-021-00905-3&domain=pdf
http://orcid.org/0000-0003-0548-0130

World Wide Web

1 Introduction

Complex networks are often modeled as graphs to process the entities/users and their rela-
tions. The structural stability of a graph is critical for maintaining the functionality of the
graph, e.g, the running of a social network. In the dynamic of a network, some users may
leave the network due to particular defects and/or attacks (e.g., user attraction strategies)
from the competitor networks. The leave of key users will affect the engagement of their
neighbors and the others s.t. the whole network becomes unstable. For instance, Friendster
was a popular social network with more than 115 million users while it is collapsed due to
the contagious user leave [20, 38].

As the departure of users may greatly break overall user engagement, i.e., the network
stability, it is critical to discover these key users and conduct wise actions accordingly. We
can motivate the key users to continuously engage in the network by proper actions, e.g.,
providing incentives for user engagement. The model of k-core is often utilized in the study
of network stability for its effectiveness, e.g., [36]. It is defined as a maximal subgraph
where each vertex has at least k neighbors in the subgraph [34, 37]. As the size of k-core
can be used to estimate the (structural) stability of a network, the collapsed k-core problem
is proposed to find b vertices (users) s.t. the deletion of these vertices leads to the smallest
k-core. Nevertheless, this problem only extracts the key users from a partial group of users,
i.e., the users related to the k-core with the input k. The result of the problem becomes
different when a different k is given, and the best k is hard to be determined.

To address the above defects, we propose and study the collapsed coreness problem:
finding b vertices s.t. the deletion of these vertices leads to the largest coreness loss (the
total decrease of coreness from every vertex. The coreness of a vertex is validated as
the “best practice” for measuring the engagement of the vertex [33]. Clearly, there is no
input of k required for the collapsed coreness problem, and the only input is the budget
b for the number of collapsers. The collapsed coreness problem essentially considers the
k-core of every input k to find the key users, while its result is not a trivial aggregation.
Since the collapsed coreness problem considers the coreness dynamic of each vertex, it is
more promising in finding the key users regarding the stability of a network. The follow-
ing example illustrates the difference between the collapsed k-core and collapsed coreness
problems.

Example 1 Figure 1 shows a graph G with 12 vertices and their connections. The coreness
of each vertex is marked near the vertex, e.g., the coreness of v4 is 2. The k-core of G is
induced by all the vertices with coreness of at least k, e.g., the 2-core is induced by v2, v3
and v4.

Table 1 shows the results of the collapsed k-core problem (CKP) and the collapsed
coreness problem (CCP) when b = 1. If k = 2, the result of CKP may be v3. The
deletion of v3 will decrease the coreness of v2 which is named the follower of v3. If
k = 3, the result of CKP may be v6 and the followers are v5, v7 and v8. As k is not
an input for CCP, its result is just v5 and the followers are v2, v6, v7 and v8. It is more
important to protect v5 compared with v3 or v6, because the leave of v5 may affect more
users.

World Wide Web

Figure 1 A Toy Graph (The coreness of each vertex is marked near the vertex)

From theoretical perspective, we prove the collapsed coreness problem is NP-hard and
hard to approximate. It is essentially more challenging than the collapsed k-core problem,
because there are more candidates and the computation of coreness loss is more costly (core
decomposition v.s. k-core computation). We first analyze the problem in the case of one
collapsed vertex, and prove several effective theorems. The lower and upper bounds are
proposed to fast estimate the coreness loss of deleting a vertex, based on the core forest
structure. An efficient way to compute the exact coreness loss for a collapser is introduced.
With the integration of all the proposed techniques, a novel greedy algorithm is proposed to
efficiently address the collapsed coreness problem. The algorithm is adapted to fast find the
collapsers within a given time limit.

Contributions Our major contributions in this paper are as follows:

– Considering the coreness loss of each vertex, we propose the collapsed coreness
problem to support the structural stability of a network.

– We prove the collapsed coreness problem is NP-hard, and APX-hard unless P=NP. The
function of coreness loss is shown to be monotone but not submodular.

– An efficient greedy algorithm GCC is proposed with novel pruning techniques based
on the theorems of one collapsed vertex, the upper/lower bounds of coreness loss, and
the efficient computation of coreness loss.

– Our experiments on 12 real datasets show that the greedy GCC is more effective than
other heuristics, and GCC outperforms the baseline algorithm on runtime by up to 3
orders of magnitude.

Table 1 Collapsed k-core v.s. collapsed coreness in Figure 1

Problem Input Collapser Followers Coreness

Collapsed k-Core k = 2, b = 1 v3 v2 from 2 to 1

k = 3, b = 1 v6 v5, v7, v8 from 3 to 2

Collapsed Coreness b = 1 v5 v2 from 2 to 1

v6, v7, v8 from 3 to 2

World Wide Web

Roadmap The rest of the paper is organized as follows. Section 2 formally defines the
problem. Section 3 analyzes the hardness of the problem. Section 4 proposes the techniques
and the GCC algorithm. The experiments are conducted in Section 5. More related works
are surveyed in Section 6. Finally, Section 7 concludes the paper.

2 Preliminaries

We consider an undirected and unweighted simple graph G = (V ,E), with n = |V | vertices
and m = |E| edges (assume m > n). Given a vertex v in a subgraph S of G, N(v, S)

denotes the neighbor set of v in S, i.e., N(v, S) = {u | (u, v) ∈ E(S)}. The degree of v in
subgraph S, i.e., |N(v, S)|, is denoted by d(v, S). Table 2 summarizes the notations.

The model of k-core [34, 37] is defined as follows.

Definition 1 (k-core Ck(·)) Given a graph G and an integer k, a subgraph S is a k-core of
G, if (i) each vertex v ∈ S has at least k neighbors in S, i.e., d(v, S) ≥ k; (ii) S is connected;
and (iii) S is maximal, i.e., any supergraph of S is not a k-core except S itself.

The computation of k-core is to recursively delete each vertex with degree less than
k in the graph. According to the definition of k-core, every vertex has a coreness
value.

Table 2 Summary of Notations (We may omit the target graph in notations when the context is clear, e.g.,
we may abbreviate N(v, S) to N(v))

Notation Definition

G = (V ,E) an undirected and unweighted simple graph

n the number of vertices in G

m the number of vertices in G (m > n)

S a subgraph of G

V (S) the set of vertices in S

E(S) the set of edges in S

E(v) the set of edges incident to vertex v in G

E(D) the set of edges incident to a vertex of D in G

N(v, S) the set of neighbors of v in S

d(v, S) degree of v in S

Ck(G) the k-core of G

c(v, S) coreness of v in S

D the set of collapsed vertices (i.e., collapsers)

cD(c, S) the coreness of v in S with the collapser set D

b the budget for the number of collapsers

l(D,G) the coreness loss of deleting D in G

F(x) the follower set of a collapser x

F(D) the follower set of the collapsed set D

T (v) the tree node containing v in the core forest

PS pivot set, i.e., {u | d(u, Cc(u)(G)) = c(u,G) ∧ u ∈ V (G)}

World Wide Web

Definition 2 (coreness c(·)) Given a graph G, the coreness of a vertex u ∈ V (G), denoted
by c(u,G), is the largest k such that Ck(G) contains u, i.e., c(u,G) = arg maxk u ∈ Ck(G).

A graph can be decomposed in a hierarchy where the vertices are distinguished by their
coreness values.

Definition 3 (core decomposition) Given a graph G, core decomposition of G is to compute
the coreness of every vertex in V (G).

Core decomposition can be computed in O(m) time by recursively removing each vertex
with the smallest degree in the graph, and update the degrees of its neighbors by bin sort [4].

Though the coreness of a user (vertex) in a network well estimates the engagement of the
user [28, 33], the users with any coreness values may leave the network by outside forces,
e.g, the user attraction strategy of a competing network. In this paper, such a leaved user
(vertex) is named as a collapser, and we say they are collapsed or we collapse them.

Definition 4 (collapsers D) Given a graph G, the set D of collapsers (i.e., collapsed
vertices), are removed from the G regardless of their coreness values.

The collapsed (removed) vertices may change the corenesses of other vertices in G, i.e.,
the coreness values of some vertices will decrease. These vertices are called the followers
of the collapsers in this paper. For each follower v, the coreness of v is changed (certainly
decreased) by deleting D in G.

Definition 5 (followers F(·)) Given a graph G and the collapser set D, the follower set of
D in G is denoted by F(D, G). As the followers do not contain the collapsers, we have
F(D, G) = {v | v ∈ V (G − D) ∧ c(v,G) �= c(v,G − {D + E(D)}).

We use cD(u,G) (resp. cx(u,G)) to denote the coreness of u in G with D collapsed
(resp. the vertex x collapsed). The loss of coreness by the collapsers is the sum of coreness
decrease from each follower.

Definition 6 (coreness loss l(·)) Given a graph G and the collapser set D, the coreness loss
of G regarding D, denoted by l(D, G), is the total decrease of coreness for every vertex in
V (G) \ D, i.e., l(D, G) = ∑

v∈V (G)\D(c(v) − cD(v)).

For a graph with collapsers, the computation of core decomposition is to first delete
the collapsers and then recursively remove each vertex with the smallest degree in the
graph. The time complexity is still O(m), because the only difference to core decomposi-
tion without collapsers is that we delete the collapsers first. The pseudo-code is given in
Algorithm 1.

As the coreness loss is promising for evaluating the leave effect of the key users (e.g., the
collapsers), we propose and study the collapsed coreness problem to find these important
users according to the coreness loss.

Problem definition Given a graph G and a budget b, the collapsed coreness problem aims
to find a set D of b vertices in G such that the coreness loss regarding D is maximized, i.e.,
l(D, G) is maximized.

World Wide Web

3 Problem analysis

In this section, we analyze the hardness of the collapsed coreness problem.

Theorem 1 Given a graph G, the collapsed coreness problem is NP-hard.

Proof We reduce the maximum coverage (MC) problem, which is NP-hard, to the collapsed
coreness problem. Given an integer b and a collection of sets where each set contains some
elements, the MC problem is to find at most b sets to cover the largest number of elements.

Consider an arbitrary instance H of MC with c sets T1, · · · , Tc and d elements
{e1, · · · , ed} = ∪1≤i≤cTi , we construct a corresponding instance of the collapsed coreness
problem on a graph G. W.l.o.g., we assume b < c < d , Figure 2 shows an example of the
construction from 3 sets and 4 elements.

The graph G contains three parts: W , P , and some 4-cliques. The part W contains c

cliques of size 4, i.e., W = ∪1≤i≤cWi where each Wi corresponds to Ti of instance H . The
part P contains d cliques of size 3, i.e., P = ∪1≤i≤dPi where each Pi corresponds to ei of
instance H .

For each set Ti(1 ≤ i ≤ c) and each elements ej (1 ≤ j ≤ d),if ej ∈ Ti , we add an edge

(wi, p
j
i) in G where wi ∈ Wi and p

j
i ∈ Pj . Then, we attach a 4-clique for each vertex with

degree 2 in current G. The construction of G is completed.
The degree of each vertex in G is at least 3. Recall that core decomposition iteratively

deletes the vertices with degree less than k and assigns them the coreness of k −1 in current
iteration, from k = 1, 2, · · · to k = kmax. Thus, the coreness of each vertex in G is 3.

For each wi ∈ W , if wi is collapsed (deleted), the 4-clique containing wi becomes
a 3-clique, and the coreness of each vertex in Pj decreases by 1 if ej ∈ Ti . Similarly,
the coreness loss of collapsing any vertex v ∈ Wi \ {wi} is same as the coreness loss
of collapsing wi . Note that it is not worthwhile to collapse more than 1 vertex in the 4-
clique, because the coreness loss is less than collapsing the vertices in different 4-cliques.

World Wide Web

: { , } : { , , } : { , } = 3

= 4

Figure 2 Construction example for hardness proofs

Besides, the coreness loss of collapsing the vertices in the 4-cliques attached to P is less
than collapsing the same number of vertices in W where each 4-clique has one collapsed
vertex.

Consequently, the optimal collapser set D for the collapsed coreness problem corre-
sponds to the optimal collection I for the MC problem, where each vertex wi ∈ D

corresponds to the set Ti ∈ I . Since the MC problem is NP-hard, we have the collapsed
coreness problem is NP-hard.

Then, we prove that the collapsed coreness problem is hard to approximate.

Theorem 2 Given a graph G, the collapsed coreness problem is APX-hard, unless
P=NP.

Proof We use the reduction from the MC problem same to the proof of Theorem 1. For
any ε > 0, the MC problem cannot be approximated in polynomial time within a ratio of
(1 − 1/e + ε), unless P=NP. If there is a solution with γ -approximation on the coreness
loss for the collapsed coreness problem, there will be a λ-approximate solution on optimal
element number for the MC problem. Thus, there is no PTAS for the collapsed coreness
problem and it is APX-hard unless P=NP.

Besides, the function of coreness loss is monotone but not submodular.

Theorem 3 The coreness loss function l(·) is monotone but not submodular.

Proof As vertex deletion will not increase the coreness of any vertex, l(·) is monotone. For
two arbitrary collapser sets A and B, if l(·) is submodular, it must hold that l(A) + l(B) ≥
l(A ∪ B) + l(A ∩ B). We consider a graph G where the vertex set V = ∪1≤i≤5vi , as shown
in Figure 3. Suppose A = {v1} and B={v2}, we have l(A ∪ B) = 3, l(A ∩ B) = l(A) =
l(B) = 0, and l(A) + l(B) = 0 < l(A ∪ B) + l(A ∩ B) = 3.

World Wide Web

Figure 3 Example for
non-submodularity

4 Our approach

As the collapsed coreness problem is NP-hard, we aim to design an effective heuristic
algorithm that can return high-quality results efficiently. Although it is not promising to
have an approximation guarantee on the heuristics, we find that the computation cost is
relatively restricted when the target is to find one best collapser. Besides, our preliminary
experiments find that the result quality of a greedy heuristic is close to that of the optimal
solution.

In this section, we first present the theoretical properties for one collapsed vertex, and
the bounds to restrict the computation cost. Then, we introduce the algorithm for computing
the followers, and the efficient GCC algorithm to greedily find promising collapsers.

4.1 Theorems for one collapser

For the deletion of one vertex, the coreness change of the affected vertices is limited as
shown by the following theorem.

Theorem 4 If a vertex x is collapsed (i.e., deleted) in G, any vertex u ∈ V (G) \ {x} may
reduce its coreness by at most 1.

Proof Suppose there is a vertex u ∈ V (G) \ {x} with coreness decreasing from k to k′
after deleting x and k > k′ + 1. Let M be the k-core before x is deleted, we have u ∈ M

and d(v,M) ≥ k for every vertex v ∈ M . If we delete x and its corresponding edges
from M , we have d(v,M \ {x ∪ E(x)}) ≥ k − 1 for every vertex v ∈ M due to at
most one edge is removed for each vertex v ∈ M . Thus, M \ {x ∪ E(x)} ⊆ Ck−1(G).
As u ∈ M and u �= x, we have u ∈ Ck−1(G) and thus k′ ≥ k − 1 which causes a
contradiction.

According to the theorem, the coreness of each follower of x decreases by exactly 1 for
collapsing (only) x. Thus, for the collapse of one vertex, the number of followers is equal
to the coreness loss.

Then, we show that the followers of a collapser always have a smaller coreness than the
coreness of the collapser.

Theorem 5 If a vertex x is collapsed in G and the vertex u is a follower of vertex x (i.e.,
u ∈ F(x,G)), we have c(u) ≤ c(x).

World Wide Web

Proof For any integer k > c(x), the k-core of G is same to the k-core of G − {x ∪ E(x)}
according to the computation of k-core, i.e., recursively deleting each vertex with degree
less than k. Thus, any vertex v with c(v) > c(x) is not a follower of x.

Note that every vertex u with the same coreness to x may have its coreness decreased by
collapsing x, despite the deletion sequence of u and x in core decomposition.

For the collapse of one vertex, to find out the effective candidate collapsers, we define
the pivot set as follows.

Definition 7 (pivot set PS) For each k-core, the pivots are the vertices with degree equal to
coreness in the k-core. The pivot set of the graph G, denoted by PS, is the union of all the
pivots for each k-core and each integer k, i.e., PS = {u | d(u,Cc(u)(G)) = c(u,G) ∧ u ∈
V (G)}.

The coreness of a pivot u is relatively unstable because it will decrease if any neighbor
of u in c(u)-core is collapsed. Thus, we can find the set of candidate collapsers based on the
pivot set for the collapse of one vertex.

Theorem 6 Given a graph G, if a vertex x is collapsed and it has at least one followers, x
is from X where X = {u | u ∈ N(v,G) ∧ v ∈ PS ∧ c(u) ≥ c(v)}; that is |F(x,G)| > 0
implies x ∈ X.

Proof For any vertex u ∈ V (G) \ X and any vertex v ∈ N(u,G), we have v is not a pivot,
and c(v,G) > d(v, C) where C is any k-core containing v. Thus, the collapse of u will not
decrease the coreness of any neighbor of u, i.e., there is no follower for collapsing u.

Example 2 In Figure 1, the coreness of each vertex is attached to the vertex. For 1-
core, the pivot is v1 as c(v1) = d(v1, C1(G)) = 1. For 2-core, the pivot is v2 as
c(v2) = d(v2, C2(G)) = 2. For 3-core, the pivot set is ∪5≤i≤12{vi}. Thus, we have
X = V (G) \ {v1, v4}, i.e., each of {v1, v4} has no follower while any other vertex has at
least one follower.

The theorems in this section indicate that computing the collapse of one vertex can be
largely optimized to reduce the time cost, because the cost of follower computation is lim-
ited (Theorem 4 and 5) and the candidate collapsers are restricted (Theorem 6). Naturally, a
greedy algorithm to find one good collapser in each iteration may be promising.

4.2 Core forest structure

Here we introduce the core forest structure of core decomposition which can be used to
design effective optimizations (e.g., the bounding techniques in next subsection).

For every integer k, we have (i) a k-core is contained in exactly one (k − 1)-core, and
(ii) each k-core is disjoint from each other. Thus, all the k-cores in the graph (for every pos-
sible k) can be organized into a forest structure, i.e., the core forest, where each connected
component of the graph corresponds to a tree in the core forest.

Tree nodes in core forest For every k-core C in G, if there is at least one vertex in C with
coreness k, the k-core C is associated with a tree node N . The node N stores all the the
vertices in C with coreness k (i.e., {u | u ∈ C ∧ c(u,G) = k}). A tree node can only have

World Wide Web

one associated k-core. Let T denote the core forest. We use T [v] to denote the tree node
containing v, and Ti .V to denote the vertex set in node Ti .

Tree edges in core forest Given a k1-core C1 associated with tree node N1, and a k2-core
C2 associated with tree node N2, the node N1 is the parent node of N2, if (i) k1 < k2; (ii)
C1 ⊃ C2; and (iii) any tree node associated with a k′-core is not the parent of N2, where
k1 < k′ < k2.

Example 3 Figure 4 depicts the core forest of the graph G in Figure 1, where G is shown
at the left and the corresponding T is at the right. As there is only one 1-core (resp. 2-core),
we have T [v1] = v1 and T [v2] = {v2, v3, v4}. As there are two (connected) 3-cores, we
have T [v5] = {v5, v6, v7, v8} and T [v9] = {v9, v10, v11, v12}.

Constructing the core forest The state-of-the art algorithm for constructing the forest of
k-core is LCPS (Level Component Priority Search) [34] with time complexity of O(m).
The algorithm pushes every vertex and its unvisited neighbors into queues (according to a
priority function) s.t. the subtree containing the vertex is built.

4.3 Bounds of follower number

In a greedy algorithm, we need to compute the coreness loss for each vertex s.t. the best
collapser can be found for the collapse of one vertex, in each iteration. However, it is costly
to compute such coreness loss. In this subsection, we aim to fast estimate the lower/upper
bounds of coreness loss for each vertex (if it is collapsed). Note that the number of followers
is equal to the coreness loss for one collapsed vertex.

Lower bound of follower number For a vertex x, we get the lower bound of followers
from its neighbors which are pivots.

Theorem 7 Given a graph G, if a vertex x is collapsed, we have |F(x,G)| ≥ lb(x), where

lb(x) = |{u | u ∈ N(x,G) ∩ PS ∧ c(u) ≤ c(x)}|

Proof For each vertex u ∈ N(x,G) ∩ PS with c(u) ≤ c(x), we have d(u,Cc(u)(G)) =
c(u,G), and its degree in c(u)-core will decrease by 1 after deleting x, i.e., d(u, Cc(u)(G \

Figure 4 Core component tree

World Wide Web

{x ∪ E(x)})) ≥ c(u,G) − 1. Thus, the coreness of u decreases by 1 after deleting x, and u

is a follower of x.

The lower bound can be more accurate if we consider h-hop neighbors of x, i.e., the
vertices affected by the neighbors of x with coreness decreased. The most accurate version
becomes the exact computation of the follower number. Our preliminary experiments find
that the additional cost of bound computation is not worthwhile, and the proposed lower
bound well balances the computation cost and the bound accuracy.

Upper bound of follower number For a vertex x, we can get the upper bound of follower
number from its own tree node T [x] and the tree nodes containing its neighbors which
are pivots. Specifically, the upper bound of follower number for a collapser x, denoted by
ub(x), is the number of vertices in the tree nodes where each node has at least one pivot
which is a neighbor of x.

Theorem 8 Given a graph G, if a vertex x is collapsed, we have |F(x,G)| ≤ ub(x), where

ub(x) = |T |, and T =
⋃

v∈N(x,G)∩PS∧c(v)≤c(x)

T [v].V \ {x}

Proof Let T ′ be any tree node NOT in T , and u be any vertex in T ′.V . (i) If c(u) > c(x),
the coreness of u keeps same on G and G − {x ∪ E(x)} by Theorem 5. (ii) If c(u) ≤ c(x),
every vertex v ∈ T ′.V is a non-pivot neighbor of x or is not a neighbor of x, i.e., v /∈
N(x,G)∩PS. So, we have Cc(v)(G−{x ∪E(x)}) = Cc(v)(G)−{x ∪E(x)} by Theorem 4:
[ii.a] for v ∈ N(x,G) and v /∈ PS, we have d(v, Cc(v)(G)) > c(v,G) and the degree of
v in c(v)-core decreases by 1 after the deletion of x. So, the coreness of v is same in G

and G − {x ∪ E(x)}; [ii.b] for v /∈ N(x,G), the degree of v is same in c(v)-core of G and
G−{x ∪E(x)}. Thus, c(v,G) = c(v,G−{x ∪E(x)}) for every vertex v ∈ T ′.V , and there
is no follower of x in T ′. Since each vertex in V (G) exists in one and only one tree node of
T , and x is not a follower of itself, ub(x) is a correct upper bound of |F(x,G)|.

Example 4 For the graph in Figure 4, we have PS = V (G) \ {v3, v4}. If v5 is collapsed
(the others are not collapsed), the set {u | u ∈ N(v5,G) ∩ PS ∧ c(u) ≤ c(v5)} =

World Wide Web

{v2, v6, v7, v8}. Therefore, we have lb(v5) = 4, ub(v5) = |T [v2].V ∪ T [v6].V \ {v5}| =
|{v2, v3, v4, v6, v7, v8}| = 6, and 4 ≤ |F(v5,G)| ≤ 6. If v6 is collapsed (the others are
not collapsed), we have {u | u ∈ N(v6,G) ∧ u ∈ PS ∧ c(u) ≤ c(v6)} = {v5, v7, v8}.
So, lb(v5) = 3, ub(v6) = |T [v5].V \ {v6}| = 3, and |F(v6, G)| = 3. Similarly, we have
lb(v1) = ub(v1) = lb(v4) = ub(v4) = 0, lb(v2) = ub(v2) = 1, lb(v3) = 1 < ub(v3) = 2,
and ub(u) = lb(u) = 3 for any other vertex u.

Algorithm 2 shows the pseudo-code for computing the upper bound and lower bound of
follower number for each vertex. For each x ∈ V (G) (Line 1), we initialize the upper bound
ub(x) and lower bound lb(x) at Line 2. The tree nodes are set to unvisited or updated to
unvisited (for latter iterations). Then for each non-pivot neighbor u of x with c(u) ≤ c(x)

(Line 4), we count the lower bound (Line 5) and upper bound (Line 6-8) of x. At Line 9,
the algorithm returns the bounds for each vertex.

The time complexity of Algorithm 2 is O(m), because each edge is visited by at most
twice for neighbor query (Line 4), each vertex is visited by at most twice (Line 1 and 4) for
enumeration, and the tree nodes are visited along with the edge visit within O(m) times.

4.4 Computation of followers

As there are still many candidates collapsers for a greedy solution, it is cost-prohibitive to
compute the followers by core decomposition from scratch. The algorithm for core mainte-
nance can be used to compute (update) the follower set efficiently, which is to update the
coreness of each vertex against edge insertion or deletion. The state-of-the-art algorithm
for core maintenance is proposed in [49]. The deletion of a vertex can be regarded as the
deletion of its incident edges.

Algorithm 3 shows the pseudo-code for computing the follower set if x is collapsed. For
each x’s neighbor u with c(u) ≤ c(x) (Line 1), we delete the edge (u, x) from G and update
the coreness of each vertex by core maintenance [49] (Line 2). Note that a neighbor u with
c(u) > c(x) is not visited at Line 1, because it cannot be a follower of x by Theorem 5. Since
the coreness of each vertex may decrease by at most 1 for the collapse of x (Theorem 4),
we simply record the vertices with coreness changed after running Line 2 and accumulate it
to the set F (Line 3 and 4).

According to the time cost of core maintenance [49], the time complexity of Algorithm 3
is O(

∑
u∈N(x,G)

∑
w∈F(x,u)

d(w)) where F(x,u) is the set of vertices with coreness decreased
after the deletion of (x, u).

Although the average time cost of Algorithm 3 is not large for one collapsed vertex,
considering the large number of candidate collapsers to compute, it is necessary to apply the
lower/upper bounds in Section 4.3 s.t. unpromising candidates can be immediately pruned
(i.e., unnecessary follower computations are skipped).

World Wide Web

4.5 The greedy algorithm (GCC)

In this subsection, we introduce the final GCC algorithm which integrates all the proposed
techniques. The aforementioned theorems and techniques naturally suggest a greedy algo-
rithm as the computation for one collapsed vertex can be significantly optimized by them.
In each of the b iteration, GCC greedily finds a best collapser by computing/estimating the
follower number of each candidate collapser.

Algorithm 4 shows the detail of our GCC algorithm. We use cmin to record the smallest
coreness of the vertices with coreness decreased in last iteration, and use D to denote the set
of collapsers (Line 1). We firstly apply core decomposition (Algorithm 1) to get the initial
coreness of each vertex (Line 2). The pivot set PS can be retrieved along with the core
decomposition when the degree threshold k increases (from the computation of k-core to
(k+1)-core). Then, we apply LCPS [34] to build the core forest T (Line 3). The upper bound
ub(·) and lower bound lb(·) of follower number are computed by Algorithm 2 (Line 4).

In each of the b iterations (Line 5), we use x to record the best collapser found so far,
and use lmax to record the follower number (i.e. coreness loss) of the best collapser (Line 6).
Then, we enumerate each vertex with non-zero follower and not in D in decreasing order
of their upper bounds based on Theorem 6 (Line 7). A vertex with larger upper bound often
has more followers in our experiments, and the computation of such vertex at an early stage
may speed up the algorithm because it fast produces a large lmax .

World Wide Web

Only when the upper bound of a vertex u is larger than lmax (Line 8), it is worthwhile to
compute the follower set of x, i.e., lmax and x may be updated. If the lower bound and upper
bound of u are the same, then the coreness loss of u is simply lb(u) (Line 9-10); Otherwise,
we compute the follower set of u and retrieve its coreness loss by Algorithm 3 (Line 11-12).
If l(u) is larger than lmax , u becomes the current best collapser (Line 13-14).

After we determine the best collapser x in current iteration, we will update the set D

(Line 15) and delete x with its incident edges from G (Line 16). The coreness c(·) of each
vertex is updated by core maintenance [49] where PS is updated together, and the core
forest T is updated by hierarchical core maintenance [27] (Line 17). After b iterations,
Algorithm 4 returns the set D of b collapsed vertices (Line 18).

The time complexity of Algorithm 4 is O(
∑b

i=1
∑

x∈CVi
T imef (x)) where CVi is the

candidate vertices in ith iteration for finding a best collapser and T imef (x) is the time
cost of Algorithm 3 with the input of x. Note that the overall time cost of core decom-
position, core forest construction, and hierarchical core maintenance is not dominated for
Algorithm 4.

To find high-quality collapsers within a time limit, we may first choose b collapsers with
the largest vertex degrees, and then replace each collapser (with the smallest coreness loss
for one collapsed vertex) by the collapsers produced by Algorithm 4 if the total coreness
loss can be larger.

5 Experiments

In this section, we conduct extensive experiments to verify the effectiveness of the collapsed
coreness model and the efficiency of our proposed algorithms.

5.1 Experimental setting

Datasets The experiments are conducted on 12 real-life datasets. Table 3 shows the statis-
tics of the datasets, ordered by the number of edges in each dataset, where davg is the average

Table 3 Statistics of datasets

Dataset n m davg dmax kmax

Facebook 4,039 88,234 43.7 1045 75

Brightkite 58,228 194,090 6.7 1098 52

Socfb-Northeastern19 13,882 381,934 77.1 1886 43

Arxiv 34,546 421,578 24.4 846 30

Gowalla 196,591 456,830 9.2 10721 51

Socfb-Syracuse56 13,653 543,982 79.7 1340 75

NotreDame 325,729 1,497,134 6.5 3812 155

Stanford 281,903 2,312,497 16.4 38626 71

Youtube 1,134,890 2,987,624 5.3 28754 51

Soc-Catster 149,700 5,448,197 72.8 80636 419

DBLP 1,566,919 6,461,300 8.3 2023 118

LiveJournal 3,997,962 34,681,189 17.4 14815 360

World Wide Web

Table 4 Summary of algorithms

Algorithm Description

Exact identifies the optimal solution by searching all possible combinations of b

collpasers

Rand randomly chooses b collpasers from V (G)

Deg chooses b collpasers from V (G) with the highest degree

Deg-C chooses b collpasers with the highest value of d(u,G) − c(u) for each u ∈ V (G)

Core chooses b collpasers from V (G) with the highest coreness

CKC the state-of-the-art algorithm for collapsed k-core problem [47]

GCC our greedy algorithm (Algorithm 4)

GCC-B GCC without bound pruning (Section 4.3)

GCC-P-B GCC-B without applying Theorem 6

GCC-O-P-B GCC-P-B without applying core maintenance in Section 4.4 (which is replaced
by core decomposition)

GCC-T within a given time limit, first use Deg to choose b collapsers, and then replace
each collapser (with the smallest coreness loss for one collapsed vertex) by the
collapsers produced by GCC if the total coreness loss can be larger

vertex degree, dmax is the largest vertex degree and kmax is the largest vertex coreness. The
datasets are obtained from SNAP1 and Network Repository.2

Algorithms For effectiveness, we mainly compare 7 algorithms with our GCC algorithm,
including 4 heuristics, the exact solution, the algorithm for collapsed k-core problem, and
the GCC-T algorithm. For efficiency, we incrementally equip the baseline with our proposed
techniques to evaluate the performance. Table 4 lists all the evaluated algorithms.

Parameters We perform our experiments on a CentOS Linux serve (Release 7.5.1804)
with Quad-Core Intel Xeon CPU (E5-2640 v4 @ 2.20GHz) and 128G memory. All the
algorithms are implemented in C++. The source code is complied by GCC(7.3.0) under -O3
optimization.

5.2 Performance evaluation

Comparisonwith exact solution We first compare the result of GCC with the Exact algo-
rithm which identifies the optimal b collapses by enumerating all possible combinations
of b vertices. Due to the huge time cost of Exact, we build small datasets by iteratively
extracting a vertex and all its neighbours from Brightkite or Arxiv, until the number
of extracted vertices reaches 20. We randomly extract 100 subgraphs, and then calculate
the average coreness loss of them. Figure 5 shows that the coreness loss of GCC is at least
94.7% (resp. 96.2%) of the optimal value in Brightkite (resp. Arxiv). In addition,
GCC is faster than Exact by up to 6 orders of magnitude, as shown by the time in the
figures.

1http://snap.stanford.edu
2http://networkrepository.com

http://snap.stanford.edu
http://networkrepository.com

World Wide Web

Table 5 Coreness loss from CKC and GCC

Dataset F. A. B. G. S. N. Y. D. L. SS. SN. SC.

maxCKC 76% 77% 84% 93% 57% 70% 97% 55% 36% 80% 75% 98%

avgCKC 54% 53% 47% 60% 23% 26% 73% 27% 19% 52% 55% 82%

Comparison with CKC Table 5 shows that the largest coreness loss (denoted by maxCKC)
that CKC can achieve on all the datasets, which is computed by running CKC with every
possible input of k. Specifically, for the collapser set C computed by CKC, we compute the
total sum of coreness loss for every coreness value if C is collapsed. It is reported that the
largest coreness loss by CKC is only 36% − 98% of the coreness loss by GCC). Table 5 also
shows that the average coreness loss of CKC (denoted by avgCKC) for an input of k, which
is 19% − 82% of the coreness loss by GCC. Besides, Figure 6 shows the coreness loss of
different k for CKC on different datasets, which indicates that CKC is infeasible to solve the
collapsed coreness problem.

We also investigate the distribution of collapsers and followers regarding their coreness
values, from GCC and CKC, respectively. Let CKCnum denote CKC with k = num, e.g.,
CKC10 is CKC with k = 10. We observe that the distribution of CKC highly depends on the
choice of k value. In Figure 7a, the collapsers from CKC10 have small coreness values while
the collapsers from GCC have a relatively uniform distribution on coreness. In Figure 7b,
for the distribution of followers, the margin is smaller while GCC has more followers than
CKC on almost every coreness value.

Comparison with other heuristics In Figure 8, we compare the coreness loss from GCC
with other heuristics (Rand, Deg, Deg-c, and Core). The details of these heuristics are
introduced in Table 4. In Figure 8a, the performance of Rand is the worst as it chooses
random vertices to collapse, where the results are omitted if the values are too small. The
performance of Core is better than Rand as they choose vertices with large coreness to
collapse, which may affect many vertices. Deg often has a larger coreness loss than Core.
It indicates that the degree of a vertex is more relevant to the power of collapse for the
collapsed coreness problem, compared with the coreness of the vertex. Deg-C represents
the redundancy of a vertex on its coreness value towards its degree, which performs almost
the same to Deg (better on Facebook). Compared with the above heuristics, GCC always

 0

 10

 20

 30

 40

 50

1 2 3 4 5 6
b

Exact

100%

100%

100%

96.8%

96.9%

94.7%

<1ms
<1ms

<1ms
3ms

90ms
<1ms <1ms

2s 37s 761s
<2ms <2ms

GCC

C
or

en
es

s
Lo

ss

(a)

 0
 5

 10
 15
 20
 25
 30
 35
 40

1 2 3 4 5 6
b

Exact

100%

100%

100%

100%

100%

96.2%<1ms
<1ms

3ms
<1ms

82ms
<1ms

1.5s
<1ms

662s31s
<2ms <2ms

GCC

C
or

en
es

s
Lo

ss

(b)

Figure 5 Exact v.s. GCC on small graphs

World Wide Web

0

1

2

3

10 20 30 40

#C
or

en
es

s
lo

ss
 (

10
4)

k

GCC
CKC

(a)

0

2

4

6

8

20 40 60 71

#C
or

en
es

s
lo

ss
 (

10
5)

k

Greedy
CKC

(b)

Figure 6 Coreness Loss on Different k

has the largest coreness loss. In Figure 8b and c, we can see the result of Deg is similar to
GCC when b is very small, but the margin becomes much larger with the increase of b.

Case study on DBLP We evaluate the effectiveness of our model on a graph which is built
on DBLP, where each vertex is an author and two authors are linked if they have more than
5 co-authored papers in top Database conferences including SIGMOD, VLDB, and ICDE.
Figure 9 depicts the collapser identified by GCC with b = 1 as well as the corresponding
followers. The collapser is the author “Hector Garcia-Molina” who has 66 followers. Here
24 of the followers are not the 1-hop neighbors of “Hector” which means a large amount
of followers does not have direct relations to the collapser. It implies that Deg is not a
good choice for the problem. Besides, we observe that the followers include many computer
scientists, and many of them are ACM fellows, e.g., “Magdalena Balazinska”, “Stanley B.
Zdonik”, and so on. The followers are also from different universities and institutions in
different countries. The above finding indicates that the engagement of many users may be
affected if the collapser left a network.

Performance of time-dependent GCC As shown in Figure 8, the algorithm Deg performs
well when b is small. This motivates us to design a time-dependent algorithm GCC-T which
first uses Deg to choose b collpasers, and then applies GCC to replace the collapsers s.t.
the coreness loss can be larger, within a given time limit. Figure 10 shows the performance

 0

 10

 20

 30

 40

 50

 60

 10 20 30 40 50 60 70

#C
ol

la
ps

er

coreness

CKC10
CKC35

GCC

(a)

0

5

10

15

20

 5 10 15 20 25 30 35 40

#F
ol

lo
w

er
 (

10
4)

coreness

CKC5
CKC11

GCC

(b)

Figure 7 Distributions of collapsers and followers on Stanford

World Wide Web

104

105

106

107

108

F. B. SN. A. G. SS. N. S. Y. SC. D. L.

Rand Core Deg Deg-C GCC

C
or

en
es

s
Lo

ss

(a)

0

1

2

0 1000 2000 3000

#C
or

en
es

s
lo

ss
 (

10
5)

b

GCC
Deg

Deg-c
Core
Rand

(b)

0

1

2

3

4

0 1000 2000 3000

#C
or

en
es

s
lo

ss
 (

10
5)

b

GCC
Deg

Deg-c
Core
Rand

(c)

Figure 8 Coreness loss from different heuristics

Figure 9 Case study on DBLP, b = 1

World Wide Web

1

3

6

9

12

10 50 90 130 170

#C
or

en
es

s
lo

ss
 (

10
4)

#Running Time (sec)

GCC-T
GCC
Deg

(a)

10

11

12

13

100 500 900 1300

#C
or

en
es

s
lo

ss
 (

10
4)

#Running Time (sec)

GCC-T
GCC
Deg

(b)

Figure 10 Performance of time-depend GCC slgorithm

of GCC-T, GCC, and Deg on facebook (b = 3000) and Socfb-Northeastern19
(b = 1000), we can see that the coreness loss of GCC-T fast approaches that of GCC when
the algorithm costs more time. Regarding a given time limit, a relatively effective result can
be retrieved by GCC-T.

Evaluating optimization techniques Figure 11a shows the total running time of
GCC-O-P-B, GCC-P-B, GCC-B, and GCC on all the 12 datasets when b = 100. The
results show that GCC-P-B is much faster than GCC-O-P-B by applying core maintenance
as introduced in Section 4.4, and GCC is faster than GCC-P-B and GCC-B by at least 2
times because of the optimization by Theorem 5 and Theorem 6. Figure 11b and c study the
impact b on four algorithms DBLP and Stanford. We can see that GCC is scalable with
the growth of b and it is always faster than the other algorithms.

10
102
103
104
105
106
107

F. B. SN. A. G. SS. N. S. Y. SC. D. L.

R
un

ni
ng

 T
im

e
(s

ec
) GCC-O-P-B

GCC-P-B
GCC-B

GCC

(a)

102

103

104

105

0 20 40 60 80 100

R
un

ni
ng

 T
im

e
(s

ec
)

b

GCC-O-P-B
GCC-P-B

GCC-B
GCC

(b)

10

102

103

104

105

106

0 20 40 60 80 100

R
un

ni
ng

 T
im

e
(s

ec
)

b

GCC-O-P-B
GCC-P-B

GCC-B
GCC

(c)

Figure 11 Time cost of different algorithms

World Wide Web

6 Related work

Identifying cohesive subgraphs is an important problem in graph analytics. In the literature,
many cohesive subgraph models have been proposed, e.g., k-core [4, 7, 22, 30, 34, 37, 45],
k-truss [15, 23, 31, 39, 41], clique [1, 8, 12], k-plex [43] and k-ECC [10, 51]. Among them,
k-core is a well-studied model, due to its effectiveness in various applications including
community discovery [11, 17, 19, 25], influential spreader identification [18, 24, 26, 32],
network structure analysis [3, 6, 9, 13, 16], predicting structural collapse [36], and graph
visualization [2, 50].

The concept of k-core and the computing algorithm are first introduced in [34, 37]. An
O(m)-time in-memory algorithm for core decomposition is proposed in [4]. The core forest
can also be computed in O(m) time as studied in [34]. Additionally, the core decomposition
algorithms under different environments are also studied including I/O efficient core decom-
position [44] and distributed core decomposition [35]. Besides, various variants of k-core
are explored, e.g., (α, β)-core [29, 42], (k, r)-core [48], (k, s)-core [21, 46], radius-bounded
k-core [40] and skyline k-core [25].

The engagement dynamics in social networks has attracted significant focus, e.g., [5, 14,
28, 33, 47]. In these works, the k-core model is widely adopted, due to its degeneration prop-
erty that can be used to quantify engagement dynamics in real social networks [34]. In the
view of enhancing the engagement of some users, the anchored k-core problem [5] and the
anchored coreness problem [28] are studied, where the degrees of the anchored (enhanced)
users are regarded as positive infinity. The collapsed k-core problem [47] considers a differ-
ent view where some key users should be protected against the attacks from the competing
networks. Thus, it investigates the effect of user departure while the anchor problems focus
on user enhancement. However, the collapsed k-core problem only considers the key users
regarding a given k-core. The collapsed coreness problem studied in this paper finds the key
users regarding the stability of the whole network.

7 Conclusion and future work

The coreness sum of all the vertices in a network is regarded as a major indicator for the
stability of the network. In this paper, we propose and study the collapsed coreness problem
to find the key users for network structural stability. Given a graph G and a budget b,
the problem aims to find b vertices in G such that the deletion of the b vertices leads to
the largest coreness loss on all the vertices. We prove the problem is NP-hard and APX-
hard unless P=NP. An efficient greedy heuristic is proposed with effective optimization
techniques. The algorithm is also extended to return a set of key users within a given time
limit. Extensive experiments on 12 real-life graphs verify that the collapsed coreness model
is effective and the proposed algorithm is efficient.

The proposed GCC algorithm may inspire efficient parallel and distributed solutions, as
the data locality and independence derived from the heuristic can ensure a sound strategy for
task allocation. We may assign the candidate vertices according to the sub-trees containing
the vertices in the forest, restrict the computation in each computing node by carefully
partitioning the graph with tree nodes, and thus reduce the communication cost between
different computing nodes. Besides, it is also interesting to explore a faster variant of the
greedy heuristic with acceptable sacrifice on result quality.

World Wide Web

Acknowledgements This work is supported by National Key Research and Development Plan (Grant No.
2018YFB1800701), National Natural Science Foundation of China (Grant No. 62002073), Guangzhou Basic
and Applied Basic Research Foundation (Grant No. 202102020675), Guangdong Higher Education Inno-
vation Group 2020KCXTD007, Guangdong Province Key Research and Development Plan (Grant No.
2019B010137004), and Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme
(2019).

Funding The grants declared in Acknowledgements were received to assist with the preparation of this
manuscript.

Availability of data and material All the datasets used in this paper is public and every one can access to it.

Code Availability All the source codes will be shared online after the manuscript is accepted.

Declarations

Conflict of Interests The authors have no relevant financial or non-financial interests to disclose.

References

1. Abello, J., Resende, M.G.C., Sudarsky, S.: Massive quasi-clique detection. In: LATIN, pp. 598–612
(2002)

2. Alvarez-Hamelin, J.I., Dall’Asta, L., Barrat, A., Vespignani, A.: Large scale networks fingerprinting and
visualization using the k-core decomposition. In: NeurIPS, pp. 41–50 (2005)

3. Alvarez-Hamelin, J.I., Dall’Asta, L., Barrat, A., Vespignani, A.: K-core decomposition of internet
graphs: hierarchies, self-similarity and measurement biases. Networks Heterog. Media 3(2), 371–393
(2008). https://doi.org/10.3934/nhm.2008.3.371

4. Batagelj, V., Zaversnik, M.: An o(m) algorithm for cores decomposition of networks CoRR
cs.DS/0310049 (2003)

5. Bhawalkar, K., Kleinberg, J.M., Lewi, K., Roughgarden, T., Sharma, A.: Preventing unraveling in social
networks: The anchored k-core problem. SIAM J. Discrete Math. 29(3), 1452–1475 (2015)

6. Bola, M., Sabel, B.A.: Dynamic reorganization of brain functional networks during cognition. Neuroim-
age 114, 398–413 (2015)

7. Bonchi, F., Khan, A., Severini, L.: Distance-generalized core decomposition. In: SIGMOD, pp. 1006–
1023 (2019)

8. Bron, C., Kerbosch, J.: Finding all cliques of an undirected graph (algorithm 457). Commun. ACM
16(9), 575–576 (1973)

9. Carmi, S., Havlin, S., Kirkpatrick, S., Shavitt, Y., Shir, E.: A model of internet topology using k-shell
decomposition. Proc. Natl. Acad. Sci. 104(27), 11150–11154 (2007)

10. Chang, L., Yu, J.X., Qin, L., Lin, X., Liu, C., Liang, W.: Efficiently computing k-edge connected
components via graph decomposition. In: SIGMOD, pp. 205–216 (2013)

11. Chen, L., Liu, C., Liao, K., Li, J., Zhou, R.: Contextual community search over large social networks.
In: ICDE, pp. 88–99. IEEE (2019). https://doi.org/10.1109/ICDE.2019.00017

12. Cheng, J., Ke, Y., Fu, A.W., Yu, J.X., Zhu, L.: Finding maximal cliques in massive networks by h*-graph.
In: SIGMOD, pp. 447–458 (2010)

13. Chu, D., Zhang, F., Lin, X., Zhang, W., Zhang, Y., Xia, Y., Zhang, C.: Finding the best k in core decom-
position: A time and space optimal solution. In: ICDE, pp. 685–696 (2020). https://doi.org/10.1109/
ICDE48307.2020.00065

14. Chwe, M.S.Y.: Communication and coordination in social networks. Rev. Econ. Stud. 67(1), 1–16 (2000)
15. Cohen, J.: Trusses: Cohesive subgraphs for social network analysis. National Security Agency Technical

Report, p. 16 (2008)
16. Daianu, M., Jahanshad, N., Nir, T.M., Toga, A.W., Jack Jr., C.R., Weiner, M.W., Thompson, P.M.:

Breakdown of brain connectivity between normal aging and alzheimer’s disease: A structural k-core
network analysis. Brain Connect. 3(4), 407–422 (2013). https://doi.org/10.1089/brain.2012.0137

https://doi.org/10.3934/nhm.2008.3.371
https://doi.org/10.1109/ICDE.2019.00017
https://doi.org/10.1109/ICDE48307.2020.00065
https://doi.org/10.1109/ICDE48307.2020.00065
https://doi.org/10.1089/brain.2012.0137

World Wide Web

17. Dourisboure, Y., Geraci, F., Pellegrini, M.: Extraction and classification of dense implicit communities
in the web graph. TWEB 3(2), 7:1–7:36 (2009)

18. Elsharkawy, S., Hassan, G., Nabhan, T., Roushdy, M.: Effectiveness of the k-core nodes as seeds for
influence maximisation in dynamic cascades. Int. J. Comput., p. 2 (2017)

19. Fang, Y., Cheng, R., Li, X., Luo, S., Hu, J.: Effective community search over large spatial graphs.
PVLDB 10(6), 709–720 (2017)

20. Garcı́a, D., Mavrodiev, P., Schweitzer, F.: Social resilience in online communities: the autopsy of
friendster. In: Conference on Online Social Networks, pp. 39–50 (2013)

21. Ghafouri, M., Wang, K., Zhang, F., Zhang, Y., Lin, X.: Efficient graph hierarchical decomposition with
user engagement and tie strength. In: DASFAA, pp. 448–465 (2020)

22. Giatsidis, C., Malliaros, F.D., Thilikos, D.M., Vazirgiannis, M.: Corecluster: A degeneracy based graph
clustering framework. In: AAAI, pp. 44–50 (2014)

23. Huang, X., Cheng, H., Qin, L., Tian, W., Yu, J.X.: Querying k-truss community in large and dynamic
graphs. In: SIGMOD, pp. 1311–1322 (2014)

24. Kitsak, M., Gallos, L.K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H.E., Makse, H.A.: Identification
of influential spreaders in complex networks. Nat. Phys. 6(11), 888 (2010)

25. Li, R., Qin, L., Ye, F., Yu, J.X., Xiao, X., Xiao, N., Zheng, Z.: Skyline community search in multi-valued
networks. In: SIGMOD, pp. 457–472 (2018)

26. Lin, J.H., Guo, Q., Dong, W.Z., Tang, L.Y., Liu, J.G.: Identifying the node spreading influence with
largest k-core values. Phys. Lett. A 378(45), 3279–3284 (2014)

27. Lin, Z., Zhang, F., Lin, X., Zhang, W., Tian, Z.: Hierarchical core maintenance on large dynamic graphs,
vol. 14, pp. 757–770 (2021). https://doi.org/10.14778/3446095.3446099

28. Linghu, Q., Zhang, F., Lin, X., Zhang, W., Zhang, Y.: Global reinforcement of social networks: The
anchored coreness problem. In: Maier, D., Pottinger, R., Doan, A., Tan, W., Alawini, A., Ngo, H.Q. (eds.)
SIGMOD, pp. 2211–2226. ACM (2020). https://doi.org/10.1145/3318464.3389744

29. Liu, B., Yuan, L., Lin, X., Qin, L., Zhang, W., Zhou, J.: Efficient (a, β)-core computation: an index-
based approach. In: Liu, L., White, R.W., Mantrach, A., Silvestri, F., McAuley, J.J., Baeza-Yates, R.,
Zia, L. (eds.) WWW, pp. 1130–1141. ACM (2019). https://doi.org/10.1145/3308558.3313522

30. Liu, B., Zhang, F., Zhang, C., Zhang, W., Lin, X.: Corecube: Core decomposition in multilayer graphs.
In: WISE, pp. 694–710 (2019). https://doi.org/10.1007/978-3-030-34223-4 44

31. Liu, B., Zhang, F., Zhang, W., Lin, X., Zhang, Y.: Efficient community search with size constraint. In:
ICDE (2021)

32. Malliaros, F.D., Rossi, M.E.G., Vazirgiannis, M.: Locating influential nodes in complex networks.
Scientific Reports 6, 19307 (2016)

33. Malliaros, F.D., Vazirgiannis, M.: To stay or not to stay: modeling engagement dynamics in social graphs.
In: CIKM, pp. 469–478 (2013)

34. Matula, D.W., Beck, L.L.: Smallest-last ordering and clustering and graph coloring algorithms. J. ACM
30(3), 417–427 (1983)

35. Montresor, A., Pellegrini, F.D., Miorandi, D.: Distributed k-core decomposition. IEEE Trans. Parallel
Distrib. Syst. 24(2), 288–300 (2013)

36. Morone, F., Del Ferraro, G., Makse, H.A.: The k-core as a predictor of structural collapse in mutualistic
ecosystems. Nat. Phys. 15(1), 95 (2019)

37. Seidman, S.B.: Network structure and minimum degree. Social Networks 5(3), 269–287 (1983)
38. Seki, K., Nakamura, M.: The mechanism of collapse of the friendster network: What can we learn from

the core structure of friendster? Social Netw. Analys. Mining 7(1), 10:1–10:21 (2017)
39. Wang, J., Cheng, J.: Truss decomposition in massive networks. PVLDB 5(9), 812–823 (2012)
40. Wang, K., Cao, X., Lin, X., Zhang, W., Qin, L.: Efficient computing of radius-bounded k-cores. In:

ICDE, pp. 233–244 (2018)
41. Wang, K., Lin, X., Qin, L., Zhang, W., Zhang, Y.: Efficient bitruss decomposition for large-scale bipartite

graphs. In: ICDE, pp. 661–672 (2020)
42. Wang, K., Zhang, W., Lin, X., Zhang, Y., Qin, L., Zhang, Y.: Efficient and effective community search

on large-scale bipartite graphs. In: ICDE. IEEE (2021)
43. Wang, Y., Jian, X., Yang, Z., Li, J.: Query optimal k-plex based community in graphs. Data Sci. Eng.

2(4), 257–273 (2017). https://doi.org/10.1007/s41019-017-0051-3
44. Wen, D., Qin, L., Zhang, Y., Lin, X., Yu, J.X.: I/O efficient core graph decomposition at web scale. In:

ICDE, pp. 133–144 (2016)
45. Zhang, C., Zhang, F., Zhang, W., Liu, B., Zhang, Y., Qin, L., Lin, X.: Exploring finer granularity within

the cores: Efficient (k, p)-core computation. In: ICDE, pp. 181–192 (2020). https://doi.org/10.1109/
ICDE48307.2020.00023

https://doi.org/10.14778/3446095.3446099
https://doi.org/10.1145/3318464.3389744
https://doi.org/10.1145/3308558.3313522
https://doi.org/10.1007/978-3-030-34223-4_44
https://doi.org/10.1007/s41019-017-0051-3
https://doi.org/10.1109/ICDE48307.2020.00023
https://doi.org/10.1109/ICDE48307.2020.00023

World Wide Web

46. Zhang, F., Yuan, L., Zhang, Y., Qin, L., Lin, X., Zhou, A.: Discovering strong communities with user
engagement and tie strength. In: DASFAA, pp. 425–441. Springer (2018)

47. Zhang, F., Zhang, Y., Qin, L., Zhang, W., Lin, X.: Finding critical users for social network engagement:
The collapsed k-core problem. In: AAAI, pp. 245–251 (2017)

48. Zhang, F., Zhang, Y., Qin, L., Zhang, W., Lin, X.: When engagement meets similarity: Efficient (k,
r)-core computation on social networks. PVLDB 10(10), 998–1009 (2017)

49. Zhang, Y., Yu, J.X., Zhang, Y., Qin, L.: A fast order-based approach for core maintenance. In: ICDE,
pp. 337–348 (2017). https://doi.org/10.1109/ICDE.2017.93

50. Zhao, F., Tung, A.K.H.: Large scale cohesive subgraphs discovery for social network visual analysis.
PVLDB 6(2), 85–96 (2012)

51. Zhou, R., Liu, C., Yu, J.X., Liang, W., Chen, B., Li, J.: Finding maximal k-edge-connected subgraphs
from a large graph. In: EDBT, pp. 480–491 (2012)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://doi.org/10.1109/ICDE.2017.93

	Discovering key users for defending network structural stability
	Abstract
	Introduction
	Contributions
	Roadmap

	Preliminaries
	Problem definition

	Problem analysis
	Our approach
	Theorems for one collapser
	Core forest structure
	Tree nodes in core forest
	Tree edges in core forest
	Constructing the core forest

	Bounds of follower number
	Lower bound of follower number
	Upper bound of follower number

	Computation of followers
	The greedy algorithm (GCC)

	Experiments
	Experimental setting
	Datasets
	Algorithms
	Parameters

	Performance evaluation
	Comparison with exact solution
	Comparison with CKC
	Comparison with other heuristics
	Case study on DBLP
	Performance of time-dependent GCC
	Evaluating optimization techniques

	Related work
	Conclusion and future work
	References

